Problem Set \#17

Due: Thursday, 9 February 2012

1. If we think of an electron as a particle, the function $P(r):=1-\left(2 r^{2}+2 r+1\right) e^{-2 r}$ is the cumulative distribution function of the distance r of the electron in a hydrogen atom from the center of the atom. (The distance is measured in Bohr radii; 1 Bohr radius $=5.29 \times 10^{-11} \mathrm{~m}$. Niels Bohr (1885-1962) was a Danish physicist.) For example, $P(1)=1-5 e^{-2} \approx 0.32$ means that the electron is within 1 Bohr radius from the center of the atom 32% of the time.
(a) Find a formula for the density function of this distribution. Sketch the density function and the cumulative distribution function.
(b) Find the median distance and the mean distance. Near what value of r is an electron most likely to be found?
2. Suppose that $a<b$. The purpose of this problem is to show that if f is a quadratic polynomial, then we have

$$
\int_{a}^{b} f(x) d x=\frac{b-a}{3}\left(\frac{f(a)}{2}+2 f\left(\frac{a+b}{2}\right)+\frac{f(b)}{2}\right) .
$$

(a) Show that this equation holds for $f_{0}(x)=1, f_{1}(x)=x$ and $f_{2}(x)=x^{2}$.
(b) Show that the equation holds for any quadratic polynomial $f(x)=A x^{2}+B x+C$.
3. Consider the following method for approximating $\int_{a}^{b} f(x) d x$. Partition the interval $[a, b]$ into n equal subintervals. On each subinterval approximate the function f by a quadratic polynomial that agrees with f at both endpoints and at the midpoint of the subinterval.
(a) Explain why the integral of f on the subinterval $\left[x_{i-1}, x_{i}\right]$ is approximately equal to the expression

$$
\frac{x_{i}-x_{i-1}}{3}\left[\frac{f\left(x_{i-1}\right)}{2}+2 f\left(\frac{x_{i-1}+x_{i}}{2}\right)+\frac{f\left(x_{i}\right)}{2}\right] .
$$

(b) Show that if we add up these approximations, we get Simpson's rule:

$$
\int_{a}^{b} f(x) d x \approx \frac{2}{3} \operatorname{MID}(n)+\frac{1}{3} \operatorname{TRAP}(n) .
$$

