## Problem Set \#18

## Due: Thursday, 16 February 2012

1. The catenary $y=\frac{1}{2}\left(e^{x}+e^{-x}\right)$ represents the shape of a hanging cable. Find the exact length of this catenary between $x=-1$ and $x=1$.
2. Let $\overrightarrow{\boldsymbol{r}}(t):=a e^{-b t} \cos (t) \overrightarrow{\boldsymbol{i}}+a e^{-b t} \sin (t) \overrightarrow{\boldsymbol{j}}$ where $a$ and $b$ are positive constants. The trace of $\overrightarrow{\boldsymbol{r}}(t)$ is called the logarithmic spiral.
(a) Show that as $t \rightarrow+\infty, \overrightarrow{\boldsymbol{r}}(t)$ approaches the origin.
(b) Show that $\overrightarrow{\boldsymbol{r}}(t)$ has finite arc length on $[0, \infty)$.
3. The trace of $\overrightarrow{\boldsymbol{r}}(t):=\sin (t) \overrightarrow{\boldsymbol{i}}+\left\{\cos (t)+\ln \left[\tan \left(\frac{t}{2}\right)\right]\right\} \overrightarrow{\boldsymbol{j}}$ where $t \in(0, \pi)$ is called a tractrix. Show the length of the line segment of the tangent between the point of tangency on the tractrix and the $y$-axis is constantly equal to 1 .
