Problem Set #18 Due: Thursday, 16 February 2012

- 1. The catenary $y = \frac{1}{2}(e^x + e^{-x})$ represents the shape of a hanging cable. Find the exact length of this catenary between x = -1 and x = 1.
- **2.** Let $\vec{r}(t) := ae^{-bt}\cos(t)\vec{i} + ae^{-bt}\sin(t)\vec{j}$ where *a* and *b* are positive constants. The trace of $\vec{r}(t)$ is called the *logarithmic spiral*.
 - (a) Show that as $t \to +\infty$, $\vec{r}(t)$ approaches the origin.
 - (b) Show that $\vec{r}(t)$ has finite arc length on $[0,\infty)$.
- **3.** The trace of $\vec{r}(t) := \sin(t)\vec{i} + \left\{\cos(t) + \ln\left[\tan\left(\frac{t}{2}\right)\right]\right\}\vec{j}$ where $t \in (0,\pi)$ is called a *tractrix*. Show the length of the line segment of the tangent between the point of tangency on the tractrix and the *y*-axis is constantly equal to 1.