Problem Set #19

Due: Thursday, 1 March 2012

- 1. Reparametrize the curve $\vec{\gamma} \colon \mathbb{R} \to \mathbb{R}^2$ defined by $\vec{\gamma}(t) = (t^3 + 1, t^2 1)$ with respect to arc length measured from (1, -1) in the direction of increasing *t*.
- 2. Let X be a nonempty set and consider a map f: X → Y. Prove that the following are equivalent:
 (a) f is injective;
 - (b) there exists $g: Y \to X$ such that $g \circ f = \mathbb{1}_X$ where $\mathbb{1}_X: X \to X$ is the identity map;
 - (c) for any set Z and any maps $h_1, h_2: Z \to X$, the equation $f \circ h_1 = f \circ h_2$ implies that $h_1 = h_2$.
- **3.** Suppose that *X* is a countable infinite set and that $g: \mathbb{N} \to X$ is a bijection. Let $x_0 := g(0)$. Prove that the function $f: X \to X \setminus \{x_0\}$ defined by $f(x) := g(g^{-1}(x) + 1)$ is a bijection.