Problem Set \#19

Due: Thursday, 1 March 2012

1. Reparametrize the curve $\vec{\gamma}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ defined by $\vec{\gamma}(t)=\left(t^{3}+1, t^{2}-1\right)$ with respect to arc length measured from $(1,-1)$ in the direction of increasing t.
2. Let X be a nonempty set and consider a map $f: X \rightarrow Y$. Prove that the following are equivalent:
(a) f is injective;
(b) there exists $g: Y \rightarrow X$ such that $g \circ f=\mathbb{1}_{X}$ where $\mathbb{1}_{X}: X \rightarrow X$ is the identity map;
(c) for any set Z and any maps $h_{1}, h_{2}: Z \rightarrow X$, the equation $f \circ h_{1}=f \circ h_{2}$ implies that $h_{1}=h_{2}$.
3. Suppose that X is a countable infinite set and that $g: \mathbb{N} \rightarrow X$ is a bijection. Let $x_{0}:=g(0)$. Prove that the function $f: X \rightarrow X \backslash\left\{x_{0}\right\}$ defined by $f(x):=g\left(g^{-1}(x)+1\right)$ is a bijection.
