Problem Set #20

Due: Thursday, 8 March 2012

1. Compute the limit of the sequence $(a_n)_{n=1}^{\infty}$ defined by

$$a_n := \frac{n^2}{\sqrt{n^6 + 1}} + \frac{n^2}{\sqrt{n^6 + 2}} + \dots + \frac{n^2}{\sqrt{n^6 + n}} = \sum_{k=1}^n \frac{n^2}{\sqrt{n^6 + k}}.$$

2. Consider the sequence $(b_k)_{k=0}^{\infty}$ given by $b_0 = 2$ and $b_{k+1} = \frac{1}{3-b_k}$ for $k \ge 0$.

- (a) Show that this sequence converges.
- **(b)** Calculate $\lim_{k\to\infty} b_k$.
- 3. (a) Let $(d_i)_{i=1}^{\infty}$ be a sequence of integers with $0 \le d_i \le 9$. Prove that series $\sum_{i=1}^{\infty} (d_i \times 10^{-i})$ converges.
 - (b) If the sequence $(d_i)_{i=1}^{\infty}$ is periodic, then show that $\sum_{i=1}^{\infty} (d_i \times 10^{-i})$ is a rational number. Find this number.