Problem Set \#20

Due: Thursday, 8 March 2012

1. Compute the limit of the sequence $\left(a_{n}\right)_{n=1}^{\infty}$ defined by

$$
a_{n}:=\frac{n^{2}}{\sqrt{n^{6}+1}}+\frac{n^{2}}{\sqrt{n^{6}+2}}+\cdots+\frac{n^{2}}{\sqrt{n^{6}+n}}=\sum_{k=1}^{n} \frac{n^{2}}{\sqrt{n^{6}+k}}
$$

2. Consider the sequence $\left(b_{k}\right)_{k=0}^{\infty}$ given by $b_{0}=2$ and $b_{k+1}=\frac{1}{3-b_{k}}$ for $k \geqslant 0$.
(a) Show that this sequence converges.
(b) Calculate $\lim _{k \rightarrow \infty} b_{k}$.
3. (a) Let $\left(d_{i}\right)_{i=1}^{\infty}$ be a sequence of integers with $0 \leqslant d_{i} \leqslant 9$. Prove that series $\sum_{i=1}^{\infty}\left(d_{i} \times 10^{-i}\right)$ converges.
(b) If the sequence $\left(d_{i}\right)_{i=1}^{\infty}$ is periodic, then show that $\sum_{i=1}^{\infty}\left(d_{i} \times 10^{-i}\right)$ is a rational number. Find this number.
