Problem Set #23

Due: Thursday, 29 March 2012

- **1.** Let $J(x) := \sum_{k=0}^{\infty} \frac{(-1)^k}{(k!)^2} \left(\frac{x}{2}\right)^{2k}$. The function *J* is called a *Bessel function of order zero*.
 - (a) What is the radius of convergence of this power series?
 - (b) Show that J satisfies the differential equation $x^2J''(x) + xJ'(x) + x^2J(x) = 0$.
- **2.** (a) The *error function* is defined by $\operatorname{erf}(x) := \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$. Find its Taylor expansion.
 - (b) By looking at the Taylor series, decide with of the following functions $ln(1+y^2)$ $sin(y^2)$ 1-cos(y)

is largest and which is smallest for values of *y* near 0.

- 3. The Fibonacci sequence $(a_n)_{n=0}^{\infty}$ is defined by $a_0 = 1$, $a_1 = 1$ and $a_{n+1} := a_n + a_{n-1}$ for all $n \ge 1$. (a) Show that $\frac{a_{n+1}}{a_n} \le 2$ for $n \ge 0$.
 - (b) Let $f(x) := \sum_{n=0}^{\infty} a_n x^n$. Show that f(x) converges if $|x| < \frac{1}{2}$.
 - (c) If $|x| < \frac{1}{2}$ then prove that $f(x) = \frac{1}{1 x x^2}$.
 - (d) Use the partial fraction decomposition for $\frac{1}{1-x-x^2}$ and the geometric series to obtain another power series expression for f.
 - (e) By comparing coefficients, show that $a_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right).$