Problem Set \#23

Due: Thursday, 29 March 2012

1. Let $J(x):=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(k!)^{2}}\left(\frac{x}{2}\right)^{2 k}$. The function J is called a Bessel function of order zero.
(a) What is the radius of convergence of this power series?
(b) Show that J satisfies the differential equation $x^{2} J^{\prime \prime}(x)+x J^{\prime}(x)+x^{2} J(x)=0$.
2. (a) The error function is defined by $\operatorname{erf}(x):=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t$. Find its Taylor expansion.
(b) By looking at the Taylor series, decide with of the following functions

$$
\ln \left(1+y^{2}\right) \quad \sin \left(y^{2}\right) \quad 1-\cos (y)
$$

is largest and which is smallest for values of y near 0 .
3. The Fibonacci sequence $\left(a_{n}\right)_{n=0}^{\infty}$ is defined by $a_{0}=1, a_{1}=1$ and $a_{n+1}:=a_{n}+a_{n-1}$ for all $n \geqslant 1$.
(a) Show that $\frac{a_{n+1}}{a_{n}} \leqslant 2$ for $n \geqslant 0$.
(b) Let $f(x):=\sum_{n=0}^{\infty} a_{n} x^{n}$. Show that $f(x)$ converges if $|x|<\frac{1}{2}$.
(c) If $|x|<\frac{1}{2}$ then prove that $f(x)=\frac{1}{1-x-x^{2}}$.
(d) Use the partial fraction decomposition for $\frac{1}{1-x-x^{2}}$ and the geometric series to obtain another power series expression for f.
(e) By comparing coefficients, show that $a_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\right)$.

