Problem Set \#24

Due: Thursday, 5 April 2012

1. Match the equations $(a)-(f)$ with the graphs (1)-(6). Give reasons for your choice.
(a) $z=\cos \left(\sqrt{x^{2}+y^{2}}\right)$
(b) $z=\sin (y)$
(c) $z=\cos ^{2}(x) \sin ^{2}(y)$
(d) $z=\frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}$
(e) $z=\cos (x y)$
(f) $z=|x||y|$
(1)
 2.0
(2)

(3)

MATH 120: page 1 of 2
(5)

(6)

2. Show that the function $f(x, y)=\frac{x^{2} y}{x^{4}+y^{2}}$ does not have a limit at $(0,0)$.
3. (a) Fix constants b and a. Show that the Cobb-Douglas function $Q=b K^{a} L^{1-a}$ where $0<a<1$ satisfies the equation $K \frac{\partial Q}{\partial K}+L \frac{\partial Q}{\partial L}=Q$.
(b) Is there a function f which has the following partial derivatives? If so what is it? Are there any others?

$$
f_{x}(x, y)=4 x^{3} y^{2}-3 y^{4}
$$

$$
f_{y}(x, y)=2 x^{4} y-12 x y^{3}
$$

