Winter Review Problems

1. If we assume that wind resistance is proportional to the square of velocity, then downward velocity v of a falling body is given by

$$
v=\sqrt{\frac{g}{k}}\left(\frac{e^{t \sqrt{g k}}-e^{-t \sqrt{g k}}}{e^{t \sqrt{g k}}+e^{-t \sqrt{g k}}}\right)
$$

where g is the acceleration due to gravity and k is a constant. Find the height h of the body above the surface of the earth as a function of time. Assume the body starts at a height h_{0}.
2. Find the following integrals
(a) $\int \frac{d \theta}{\cos ^{3}(\theta)}$
(b) $\int z \sqrt{1-z^{2}} d z$
(c) $\quad \int \cos (\ln (t)) d t$
(d) $\int \frac{\ln (\ln (y))}{y \ln (y)} d y$
(e) $\int \frac{d w}{1+e^{w}}$
(f) $\int \ln \left(a^{2}+x^{2}\right) d x$
(g) $\int \frac{\sin (\theta)}{\cos ^{2}(\theta)+\cos (\theta)-2} d \theta$
(h) $\int \frac{y^{4}+3 y^{3}+2 y^{3}+1}{y^{2}+3 y+2} d y$
(i) $\int \frac{e^{t}}{e^{2 t}+3 e^{t}+2} d t$
(j) $\int \frac{2 x^{3}-2 x^{2}+1}{x^{2}-x} d x$
(k) $\int_{0}^{1 / 2} \frac{2-8 y}{1+4 y^{2}} d y$
(l) $\int \frac{2 s+2}{\left(s^{2}+1\right)(s-1)^{2}} d s$
3. Derive the following formulas:
(a)

$$
\int x^{n} \cos (a x) d x=\frac{1}{a} x^{n} \sin (a x)-\frac{n}{a} \int x^{n-1} \sin (a x) d x
$$

(b) $\quad \int \cos ^{n}(x) d x=\frac{1}{n} \cos ^{n-1}(x) \sin (x)+\frac{n-1}{n} \int \cos ^{n-2}(x) d x$
4. Calculate the following integrals, if they converge.
(a) $\int_{1}^{\infty} \frac{1}{5 x+2} d x$
(b) $\int_{0}^{\infty} t e^{-t} d t$
(c) $\int_{-\infty}^{\infty} \frac{d z}{z^{2}+25}$
(d) $\int_{2}^{\infty} \frac{d w}{w \ln w}$
(e) $\int_{0}^{2} \frac{1}{\sqrt{4-x^{2}}} d x$
(f) $\int_{0}^{\pi} \frac{1}{\sqrt{y}} e^{-\sqrt{y}} d y$
5. Find the volume of the following two solids. The base of a solid is the region between the curve $y=2 \sqrt{\sin (x)}$ and the interval $0 \leqslant x \leqslant \pi$ on the x-axis. The cross sections perpendicular to the x-axis are
(a) equilateral triangles with bases running from the x-axis to the curve.
(b) squares with bases running from the x-axis to the curve.
6. Find the volume of the solid generated by revolving the region in the first quadrant bounded by $x=12\left(y^{2}-y^{3}\right)$ and $x=0$ about the line $y=\frac{8}{5}$.
7. Find volume of the solid generated by revolving the region in the first quadrant bounded by the curve $y=x^{2}, y=0$ and $x=1$ about the line $x=-1$.
8. While taking a walk along the road where you live, you accidentally drop your glove. You don't know where you dropped it. Suppose the probability density $p(x)$ for having dropped the glove x kilometers from home (along the road) is $p(x)=2 e^{-2 x}$ for $x \geqslant 0$.
(a) What is the probability that you dropped it within 1 kilometer of home?
(b) At what distance y from home is the probability that you dropped it with y kilometers equal to 0.95 ?
9. An object is moving counterclockwise at a constant speed around the circle $x^{2}+y^{2}=1$ where x and y are measured in meters. It completes one revolution every minute.
(a) What is its speed?
(b) What is its velocity vector 30 seconds after it passes the point $(1,0)$? Does your answer change if the object is moving clockwise? Explain.
10. Find the length of the following curves.
(a) $x=\cos \left(e^{t}\right), y=\sin \left(e^{t}\right)$ for $0 \leqslant t \leqslant 1$.
(b) $y=\frac{x^{4}}{4}+\frac{1}{8 x^{2}}$ from $x=1$ to $x=2$.
(c) $y=\ln \left(1-x^{2}\right)$ from $x=0$ to $x=1 / 2$.
11. Which of the following sequences converge and which diverge? Give reasons for your answers.
(a) $\quad a_{n}=1-\frac{1}{n}$ for $n \geqslant 1$
(b) $\quad b_{k}=k-\frac{1}{k} \quad$ for $k \geqslant 1$
(c) $\quad c_{i}=\frac{(2 i+3)!}{(i+1)!} \quad$ for $i \geqslant 0$
(d) $\quad d_{j}=\left((-1)^{j}+1\right)\left(\frac{j+1}{j}\right) \quad$ for $j \geqslant 1$
12. Find the sum of the infinite series

$$
1+\frac{2}{10}+\frac{3}{10^{2}}+\frac{7}{10^{3}}+\frac{2}{10^{4}}+\frac{3}{10^{5}}+\frac{7}{10^{6}}+\frac{2}{10^{7}}+\frac{3}{10^{8}}+\frac{7}{10^{9}}+\cdots .
$$

13. Determine whether the following infinite series converges or diverges
(a) $\sum_{n=1}^{\infty}(\sqrt{2})^{1-n}$
(b) $\sum_{i=0}^{\infty} \frac{1+2^{i}+3^{i}}{5^{i}}$
(c) $\sum_{j=0}^{\infty} j e^{-j^{2}}$
(d) $\sum_{k=2}^{\infty} \frac{1}{k \sqrt{\ln (k)}}$
(e) $\quad \sum_{m=3}^{\infty} \frac{1}{m(\ln m)[\ln (\ln m)]^{2}}$
(f) $\sum_{\ell=1}^{\infty} \frac{1}{\ell^{2}+\ell+1}$
(g) $\sum_{q=1}^{\infty} \frac{q^{2}-q}{q^{4}+2}$
(h) $\sum_{p=1}^{\infty} \frac{p+2^{p}}{p+3^{p}}$
(i) $\sum_{n=0}^{\infty} \frac{(-1)^{n} n}{3 n+2}$
(j) $\sum_{k=0}^{\infty} \frac{(-1)^{k} k}{\sqrt{2^{k}+1}}$
(k) $\sum_{j=1}^{\infty} \frac{\cos (j \pi)}{j^{3 / 2}}$
(l) $\sum_{m=0}^{\infty} \frac{(-1)^{m+1} m^{2} \cos (m)}{3^{m^{2}}}$
(m) $\sum_{q=1}^{\infty} \frac{(q+2)!}{3^{q}(q!)^{2}}$
(n) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{1 \cdot 4 \cdot 7 \cdots(3 n-2)}$
14. Find the radius and interval of convergence for each of the following power series.
(a) $\sum_{n=1}^{\infty} \frac{n x^{n}}{2^{n}}$
(b) $\sum_{m=0}^{\infty} \frac{(-4)^{m} x^{m}}{\sqrt{2 m+1}}$
(c) $\sum_{k=1}^{\infty} \frac{(2 x-1)^{k}}{k^{4}+16}$
(d) $\sum_{j=1}^{\infty} \frac{j!x^{j}}{j^{j}}$
(e) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-2)^{n}}{n^{2}}$
(f) $\sum_{m=1}^{\infty} \frac{(\ln m) x^{m}}{3^{m}}$
(g) $\sum_{i=1}^{\infty} \frac{(-1)^{i+1} 10^{i}(x-10)^{2 i}}{i!}$
(h) $\sum_{k=0}^{\infty}\left(\frac{x^{2}+1}{5}\right)^{k}$
15. By recognizing each of the following series as a Taylor series evaluated at a particular value of x, find the sum of each of the following convergent series.
(a) $1+\frac{2}{1!}+\frac{4}{2!}+\frac{8}{3!}+\cdots+\frac{2^{n}}{n!}+\cdots$
(b) $1-\frac{1}{3!}+\frac{1}{5!}-\frac{1}{7!}+\cdots+\frac{(-1)^{n}}{(2 n+1)!}+\cdots$
(c) $1+\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\cdots+\frac{1}{4^{n}}+\cdots$
(d) $1-\frac{1}{2!}+\frac{1}{4!}-\frac{1}{6!}+\cdots$
16. Suppose $p(x)=a+b x+c x^{2}$ is the second degree Taylor polynomial for the function f about $x=0$. What can you say about the signs of a, b, c if f has the graph given below?

17. Find the first four nonzero terms of the Taylor series about 0 for each of the following functions.
(a) $\sqrt{1-2 x}$
(b) $\ln (1-2 y)$
(c) $\frac{z}{e^{z^{2}}}$
(d) $\sqrt{1+t} \sin (t)$
18. The Dubois formula relates a person's surface area s in m^{2} to weight w in kg and height h in cm by $s=f(w, h)=\frac{1}{100} w^{1 / 4} h^{3 / 4}$. Find $f(65,160), f_{w}(65,160)$ and $f_{h}(65,160)$. Interpret your answers in terms of surface area, height and weight.
19. Dieterici's equation of state for a gas is

$$
P(V-b) e^{a / R V T}=R T
$$

where a, b and R are constants. Regard volume V as a function of temperature T and pressure P and prove that

$$
\frac{\partial V}{\partial T}=\frac{R+\frac{a}{T V}}{\frac{R T}{V-b}-\frac{a}{V^{2}}}
$$

20. Let f be a differentiable function with $f_{x}(2,1)=-3, f_{y}(2,1)=4$, and $f(2,1)=7$.
(a) Give an equation for the tangent plane to the graph of f at $x=2, y=1$.
(b) Give an equation for the tangent line to the contour for f at $x=2, y=1$.
21. A function $u=f(x, y)$ with continuous second-order partial derivatives satisfying Laplace's equation: $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ is called a harmonic function. Which of the following functions are harmonic?
(a) $u(x, y)=x^{3}-3 x y^{2}$
(b) $v(x, y)=x^{2}+y^{2}$
(c) $w(x, y)=e^{x} \sin (y)$
22. The mean curvature of $f(x, y)$ is defined to be

$$
\text { mean curvature }=\frac{\left(1+f_{y}^{2}\right) f_{x x}-2 f_{x y} f_{x} f_{y}+\left(1+f_{x}^{2}\right) f_{y y}}{2\left(1+f_{x}^{2}+f_{y}^{2}\right)^{3 / 2}}
$$

Show that the function $f(x, y)=\arctan \left(\frac{y}{x}\right)$ has mean curvature equal to 0 .

When you have completed all the problems (and not before), you may view my solutions at http://www.mast.queensu.ca/~ggsmith/Math120/reviewWinterSolutions.pdf

