Problem Set #1 Due: 12 September 2008

- **1.** Let f be a differentiable function of one variable. If $w = f\left(\frac{x+y}{xy}\right)$, then show that $x^2 \frac{\partial w}{\partial x} y^2 \frac{\partial w}{\partial y} = 0$.
- **2.** Consider the surface defined by the equation

 $x^{3}z + x^{2}y^{2} + \sin(yz) = -3.$

- (a) Find an equation for the plane tangent to this surface at the point (-1, 0, 3).
- (b) Parametrize the line normal to this surface at the point (-1, 0, 3).

Remark. For a surface $S \subset \mathbb{R}^3$, the *normal line* to S at $\vec{p} \in S$ is the line that passes through the point \vec{p} and is perpendicular to S at \vec{p} .

- **3.** The surface $z = 3x^2 + \frac{1}{6}x^3 \frac{1}{8}x^4 4y^2$ is intersected by the plane 2x y = 1. The resulting intersection is a curve on the surface.
 - (a) Parametrize this curve.
 - (b) Parametrize the line tangent to this curve at the point $(1, 1, -\frac{23}{24})$.