Problem Set \#1
 Due: 12 September 2008

1. Let f be a differentiable function of one variable. If $w=f\left(\frac{x+y}{x y}\right)$, then show that

$$
x^{2} \frac{\partial w}{\partial x}-y^{2} \frac{\partial w}{\partial y}=0
$$

2. Consider the surface defined by the equation

$$
x^{3} z+x^{2} y^{2}+\sin (y z)=-3 .
$$

(a) Find an equation for the plane tangent to this surface at the point $(-1,0,3)$.
(b) Parametrize the line normal to this surface at the point $(-1,0,3)$.

Remark. For a surface $S \subset \mathbb{R}^{3}$, the normal line to S at $\overrightarrow{\boldsymbol{p}} \in S$ is the line that passes through the point $\overrightarrow{\boldsymbol{p}}$ and is perpendicular to S at $\overrightarrow{\boldsymbol{p}}$.
3. The surface $z=3 x^{2}+\frac{1}{6} x^{3}-\frac{1}{8} x^{4}-4 y^{2}$ is intersected by the plane $2 x-y=1$. The resulting intersection is a curve on the surface.
(a) Parametrize this curve.
(b) Parametrize the line tangent to this curve at the point $\left(1,1,-\frac{23}{24}\right)$.

