Problem Set \#2
 Due: 19 September 2007

1. Show that the tangent lines to the path $\overrightarrow{\boldsymbol{\alpha}}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ given by $\overrightarrow{\boldsymbol{\alpha}}(t):=3 t \overrightarrow{\boldsymbol{\imath}}+3 t^{2} \overrightarrow{\boldsymbol{\jmath}}+2 t^{3} \overrightarrow{\boldsymbol{\kappa}}$ make a constant angle with the line $y=0, z=x$.
2. Consider the path $\overrightarrow{\boldsymbol{\beta}}:(0, \pi) \rightarrow \mathbb{R}^{2}$ given by $\overrightarrow{\boldsymbol{\beta}}(t):=\sin (t) \overrightarrow{\boldsymbol{\imath}}+(\cos (t)+\ln (\tan (t / 2))) \overrightarrow{\boldsymbol{\jmath}}$. The underlying curve is called the tractrix.
(a) Show that $\overrightarrow{\boldsymbol{\beta}}$ is nonsingular at everywhere except $t=\pi / 2$.
(b) Show that the length of the segment of the tangent of the tractrix between the point of tangency and the y-axis is constantly equal to 1 .

Remark. The identity $\sin (2 \theta)=2 \sin (\theta) \cos (\theta)$ may be useful in part (a).
3. Let $\vec{\gamma}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be the path defined by $\vec{\gamma}(t):=e^{2 t} \sin (t) \overrightarrow{\boldsymbol{\imath}}+e^{2 t} \cos (t) \overrightarrow{\boldsymbol{\jmath}}+\overrightarrow{\boldsymbol{k}}$. The underlying curve is called a logarithmic spiral.
(a) Show that $\lim _{t \rightarrow-\infty} \int_{t}^{0}\left\|\vec{\gamma}^{\prime}(u)\right\| d u$ is finite; that is, the path $\vec{\gamma}$ has finite length over the infinite interval $(-\infty, 0]$.
(b) Determine the moving frame $(\overrightarrow{\boldsymbol{T}}, \overrightarrow{\boldsymbol{N}}, \overrightarrow{\boldsymbol{B}})$ and compute the curvature and torsion for $\vec{\gamma}$.

