## Problem Set \#7 <br> Due: 24 October 2008

1. (a) Find the volume of an ice cream cone bounded by the cone $z=\sqrt{x^{2}+y^{2}}$ and the hemisphere $z=\sqrt{8-x^{2}-y^{2}}$.
(b) Find the average distance to the origin for points in the ice cream cone region bounded by the hemisphere $z=\sqrt{8-x^{2}-y^{2}}$ and the cone $z=\sqrt{x^{2}+y^{2}}$.
2. (a) A bead is made by drilling a cylindrical hole of radius 1 mm through a sphere of radius 5 mm . Set up a triple integral in cylindrical coordinates representing the volume of the bead. Evaluate the integral.
(b) A half-melon is approximated by the region between two concentric spheres, one a radius $a$ and the other of radius $b$ with $0<a<b$. Write a triple integral, including limits of integration, giving the volume of the half-melon. Evaluate the integral.
3. (a) Let $B$ be the region $0 \leq y \leq x$ and $0 \leq x \leq 1$. Evaluate $\int_{B}(x+y) d A$ by making the change of variables $x=u+v, y=u-v$. Check your answer by evaluating the integral directly.
(b) Use the change of variables $x=u-u v, y=u v$, to calculate $\int_{R} \frac{1}{x+y} d y d x$ where $R$ is the region bounded by $x=0, y=0, x+y=1$ and $x+y=4$.
