Problem Set \#8
 Due: 31 October 2008

1. Suppose L is the line segment from the origin to the point $(4,12)$ and $\overrightarrow{\boldsymbol{F}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the vector field defined by $\overrightarrow{\boldsymbol{F}}(x, y):=x y \overrightarrow{\boldsymbol{\imath}}+x \overrightarrow{\boldsymbol{\jmath}}$.
(a) Is line integral $\int_{L} \overrightarrow{\boldsymbol{F}} \cdot d \overrightarrow{\boldsymbol{r}}$ greater than, less than, or equal to zero? Give a geometric explanation.
(b) A parameterization of L is $\vec{\gamma}:[0,4] \rightarrow \mathbb{R}^{2}$ where $\vec{\gamma}(t):=t \overrightarrow{\boldsymbol{\imath}}+3 t \overrightarrow{\boldsymbol{\jmath}}$. Use this to compute $\int_{L} \overrightarrow{\boldsymbol{F}} \cdot d \overrightarrow{\boldsymbol{r}}$.
(c) Suppose a particle leaves the point $(0,0)$, moves along the line towards the point $(4,12)$, stops before reaching it and backs up, stops again and reverses direction, then completes its journey to the endpoint. All travel takes place along the line segment joining the point $(0,0)$ to the point $(4,12)$. If we call this path L^{\prime}, explain why $\int_{L^{\prime}} \overrightarrow{\boldsymbol{F}} \cdot d \overrightarrow{\boldsymbol{r}}=\int_{L} \overrightarrow{\boldsymbol{F}} \cdot d \overrightarrow{\boldsymbol{r}}$.
(d) A parameterization for a path like L^{\prime} is given by $\overrightarrow{\boldsymbol{\beta}}:[0,4] \rightarrow \mathbb{R}^{2}$ with

$$
\overrightarrow{\boldsymbol{\beta}}(t)=\frac{1}{3}\left(t^{3}-6 t^{2}+11 t\right) \overrightarrow{\boldsymbol{\imath}}+\left(t^{3}-6 t^{2}+11 t\right) \overrightarrow{\boldsymbol{\jmath}} .
$$

Check that this parameterization begins at the point $(0,0)$ and ends at the point $(4,12)$. Also check that all points of L^{\prime} lie on the line segment connecting the point $(0,0)$ to the point $(4,12)$. What are the values of t at which the particle changes direction?
(e) Find $\int_{L^{\prime}} \overrightarrow{\boldsymbol{F}} \cdot d \overrightarrow{\boldsymbol{r}}$ using the parameterization in part (d).
2. This problem shows how the Fundamental Theorem for Line Integrals can be derived from the Fundamental Theorem for Calculus. Suppose that $\vec{\gamma}:[a, b] \rightarrow \mathbb{R}^{3}$ with $\vec{\gamma}(t):=x(t) \overrightarrow{\boldsymbol{\imath}}+y(t) \overrightarrow{\boldsymbol{\jmath}}+z(t) \overrightarrow{\boldsymbol{k}}$ s a smooth parameterization of C with endpoints $\overrightarrow{\boldsymbol{p}}:=(x(a), y(a), z(a))$ and $\overrightarrow{\boldsymbol{q}}:=(x(b), y(b), z(b))$. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a smooth function.
(a) If $h: \mathbb{R} \rightarrow \mathbb{R}$ is the composite function $h(t):=f(\vec{\gamma}(t))$, then compute $h^{\prime}(t)$.
(b) Show that $\int_{C} \overrightarrow{\boldsymbol{\nabla}} f \cdot d \overrightarrow{\boldsymbol{r}}=f(\overrightarrow{\boldsymbol{q}})-f(\overrightarrow{\boldsymbol{p}})$.
3. (a) Consider the vector field $\overrightarrow{\boldsymbol{F}}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ where $\overrightarrow{\boldsymbol{F}}(x, y, z):=y \overrightarrow{\boldsymbol{\imath}}+\left(3 y^{3}-x\right) \overrightarrow{\boldsymbol{\jmath}}+z \overrightarrow{\boldsymbol{k}}$. Evaluate $\int_{C_{n}} \overrightarrow{\boldsymbol{F}} \cdot d \overrightarrow{\boldsymbol{r}}$ for the curve C_{n} parametrized by $\vec{\gamma}:[0,1] \rightarrow \mathbb{R}^{3}$ where $\vec{\gamma}(t):=t \overrightarrow{\boldsymbol{\imath}}+t^{n} \overrightarrow{\boldsymbol{\jmath}}$. What happens as $n \rightarrow \infty$?
(b) If H is the helix parametrized by $\vec{\varepsilon}:[0,1.25 \pi] \rightarrow \mathbb{R}^{3}$ where

$$
\overrightarrow{\boldsymbol{\varepsilon}}(t):=\cos (t) \overrightarrow{\boldsymbol{\imath}}+\sin (t) \overrightarrow{\boldsymbol{\jmath}}+t \overrightarrow{\boldsymbol{k}},
$$

then evaluate $\int_{H} y z^{2} e^{x y z^{2}} d x+x z^{2} e^{x y z^{2}} d y+2 x y z e^{x y z^{2}} d z$.

