Problem Set \#9
 Due: 7 November 2008

1. (a) Consider $\overrightarrow{\boldsymbol{F}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $\overrightarrow{\boldsymbol{F}}(x, y):=\sin (x) \overrightarrow{\boldsymbol{\imath}}+(x+y) \overrightarrow{\boldsymbol{\jmath}}$. Find the line integral of $\overrightarrow{\boldsymbol{F}}$ around the perimeter of the rectangle with corners $(3,0),(3,5)$, $(-1,5)$, and $(-1,0)$ traversed in that order.
(b) Let D be a region for which Green's theorem holds. For any two differentiable functions $P(x, y)$ and $Q(x, y)$, prove that

$$
\int_{\partial D} P Q d x+P Q d y=\int_{D}\left[Q\left(\frac{\partial P}{\partial x}-\frac{\partial P}{\partial y}\right)+P\left(\frac{\partial Q}{\partial x}-\frac{\partial Q}{\partial y}\right)\right] d A
$$

2. (a) If $\overrightarrow{\boldsymbol{F}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by $\overrightarrow{\boldsymbol{F}}(x, y):=x \overrightarrow{\boldsymbol{\jmath}}$, then show that the line integral of vector field $\overrightarrow{\boldsymbol{F}}$ around a closed curve in the $x y$-plane, oriented as in Green's Theorem, measures the area of the region enclosed by the curve.
(b) Calculate the area of the region within the folium of Descartes $x^{3}+y^{3}=3 x y$; it is parameterized by $\vec{\gamma}:[0, \infty) \rightarrow \mathbb{R}^{2}$ where $\vec{\gamma}(t)=\left(\frac{3 t}{1+t^{3}}\right) \overrightarrow{\boldsymbol{\imath}}+\left(\frac{3 t^{2}}{1+t^{3}}\right) \overrightarrow{\boldsymbol{\jmath}}$.

3. Consider the vector field $\overrightarrow{\boldsymbol{F}}: \mathbb{R} \times(0, \infty) \rightarrow \mathbb{R}^{2}$ given by $\overrightarrow{\boldsymbol{F}}(x, y):=\frac{x+x y^{2}}{y^{2}} \overrightarrow{\boldsymbol{\imath}}-\frac{x^{2}+1}{y^{3}} \overrightarrow{\boldsymbol{\jmath}}$
(a) Determine if $\overrightarrow{\boldsymbol{F}}$ is path-independent.
(b) Find the work done by $\boldsymbol{\vec { F }}$ in moving a particle along the curve $y=1+x-x^{2}$ from $(0,1)$ to $(1,1)$.
