Problem Set \#10
 \section*{Due: 14 November 2008}

1. Let P be the solid tetrahedron (a.k.a. the standard simplex in \mathbb{R}^{3}) with vertices at $\overrightarrow{\boldsymbol{p}}_{0}:=(0,0,0), \overrightarrow{\boldsymbol{p}}_{1}:=(1,0,0), \overrightarrow{\boldsymbol{p}}_{2}:=(0,1,0)$ and $\overrightarrow{\boldsymbol{p}}_{3}:=(0,0,1)$.

(a) Calculate the flux out of P for any constant vector field $\overrightarrow{\boldsymbol{V}}=a \overrightarrow{\boldsymbol{i}}+b \overrightarrow{\boldsymbol{\jmath}}+c \overrightarrow{\boldsymbol{k}}$ by computing the flux through each face separately.
(b) Explain why the answers to the first part makes sense.
2. Let $\overrightarrow{\boldsymbol{H}}(x, y, z):=\left(e^{x y}+3 z+5\right) \overrightarrow{\boldsymbol{\imath}}+\left(e^{x y}+5 z+3\right) \overrightarrow{\boldsymbol{\jmath}}+\left(3 z+e^{x y}\right) \overrightarrow{\boldsymbol{k}}$. Calculate the flux of \vec{H} through the square S of side length 2 with one vertex at the origin, one edge along the positive y-axis, one edge in the $x z$-plane with $x>0, z>0$ and normal $\overrightarrow{\boldsymbol{n}}=\overrightarrow{\boldsymbol{\imath}}-\overrightarrow{\boldsymbol{k}}$.
3. (a) The torus T can be parametrized by $\overrightarrow{\boldsymbol{\tau}}:[0,2 \pi] \times[0,2 \pi] \rightarrow \mathbb{R}^{3}$ where $a>b>0$ and $\overrightarrow{\boldsymbol{\tau}}(\theta, \phi)=(a+b \cos (\theta)) \cos (\phi) \overrightarrow{\boldsymbol{\imath}}+(a+b \cos (\theta)) \sin (\phi) \overrightarrow{\boldsymbol{\jmath}}+b \sin (\theta) \overrightarrow{\boldsymbol{k}}$. Find the surface area of T.
(b) Find the area of the ellipse E on the plane $2 x+y+z=2$ cut out by the circular cylinder $x^{2}+y^{2}=2 x$.
