Problem Set \#11
 Due: 21 November 2008

1. Evaluate $\int_{Q} \overrightarrow{\boldsymbol{E}} \cdot d \overrightarrow{\boldsymbol{S}}$ where $\overrightarrow{\boldsymbol{E}}(x, y, z):=z e^{x^{2}} \boldsymbol{\vec { \boldsymbol { \imath } }}+3 y \overrightarrow{\boldsymbol{\jmath}}+\left(2-y z^{7}\right) \overrightarrow{\boldsymbol{k}}$ and Q is the union of the five "upper" faces of the unit cube $[0,1] \times[0,1] \times[0,1]$ orient outward. The face $z=0$ is not part of Q.
2. Let S be the surface defined by $z=e^{1-x^{2}-y^{2}}$ with $z \geqslant 1$ oriented upward and let $\overrightarrow{\boldsymbol{H}}(x, y, z):=x \overrightarrow{\boldsymbol{\imath}}+y \overrightarrow{\boldsymbol{\jmath}}+(2-2 z) \overrightarrow{\boldsymbol{k}}$. Calculate $\int_{S} \overrightarrow{\boldsymbol{H}} \cdot d \overrightarrow{\boldsymbol{S}}$.
3. (a) Consider a vector field $\overrightarrow{\boldsymbol{F}}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $\overrightarrow{\boldsymbol{\nabla}} \cdot \overrightarrow{\boldsymbol{F}}(x, y, z)=x^{2}+y^{2}+3$. Find an oriented surface M such that the flux integral $\int_{M} \overrightarrow{\boldsymbol{F}} \cdot d \overrightarrow{\boldsymbol{S}}$ is negative or explain why no such surface exists.
(b) Find the flux of the vector field $\overrightarrow{\boldsymbol{G}}(x, y, z)=x y \overrightarrow{\boldsymbol{\imath}}+y z \overrightarrow{\boldsymbol{\jmath}}+z x \overrightarrow{\boldsymbol{k}}$ out of a sphere of radius 1 centered at the origin.
