Problem Set \#12
 Due: 28 November 2008

1. (a) Show that the path $\vec{\gamma}:[0,2 \pi] \rightarrow \mathbb{R}^{3}$ defined by $\vec{\gamma}(t):=\cos (t) \overrightarrow{\boldsymbol{\imath}}+\sin (t) \overrightarrow{\boldsymbol{\jmath}}+\sin (2 t) \overrightarrow{\boldsymbol{k}}$ lies on the surface $z=2 x y$.
(b) Evaluate $\int_{C}\left(y^{3}+\cos (x)\right) d x+\left(\sin (y)+z^{2}\right) d y+x d z$ where C is the closed curve parametrized by $\vec{\gamma}$.
2. (a) Evaluate the circulation of the vector field $\overrightarrow{\boldsymbol{G}}(x, y, z):=x y \overrightarrow{\boldsymbol{\imath}}+z \overrightarrow{\boldsymbol{\jmath}}+3 y \overrightarrow{\boldsymbol{k}}$ around a square of side length 6 , centered at the origin lying in the $y z$-plane, and oriented counterclockwise viewed from the positive x-axis.
(b) Let $\overrightarrow{\boldsymbol{H}}(x, y, z):=(y-z) \overrightarrow{\boldsymbol{\imath}}+(x+z) \overrightarrow{\boldsymbol{\jmath}}+x y \overrightarrow{\boldsymbol{k}}$ and let C be the circle of radius 3 centered at $(2,1,0)$ in the $x y$-plane oriented counterclockwise when viewed from above. Compute $\int_{C} \overrightarrow{\boldsymbol{H}} \cdot d \overrightarrow{\boldsymbol{r}}$. Is $\overrightarrow{\boldsymbol{H}}$ path-independent? Explain.
3. Water in a bathtub has velocity vector field ${ }^{1}$ near the drain given, for x, y, z in cm , by

$$
\overrightarrow{\boldsymbol{V}}(x, y, z):=\frac{-y \overrightarrow{\boldsymbol{\imath}}+x \overrightarrow{\boldsymbol{\jmath}}}{\left(z^{2}+1\right)^{2}}+\frac{-z(x \overrightarrow{\boldsymbol{\imath}}+y \overrightarrow{\boldsymbol{\jmath}})}{\left(z^{2}+1\right)^{2}}-\frac{\overrightarrow{\boldsymbol{k}}}{z^{2}+1}=-\frac{y+x z}{\left(z^{2}+1\right)^{2}} \overrightarrow{\boldsymbol{\imath}}-\frac{y z-x}{\left(z^{2}+1\right)^{2}} \overrightarrow{\boldsymbol{\jmath}}-\frac{1}{z^{2}+1} \overrightarrow{\boldsymbol{k}} \mathrm{~cm} \cdot \mathrm{~s}^{-1} .
$$

(a) The drain in the bathtub is a disk in the $x y$-plane with center at the origin and radius 1 cm . Find the rate at which the water is leaving the bathtub.
(b) Find the divergence of $\overrightarrow{\boldsymbol{V}}$.
(c) Find the flux of the water through the hemisphere of radius 1 , centered at the origin, lying below the $x y$-plane and oriented downward.
(d) Consider the vector field

$$
\overrightarrow{\boldsymbol{U}}(x, y, z):=\frac{1}{2}\left(\frac{y}{z^{2}+1} \overrightarrow{\boldsymbol{\imath}}-\frac{x}{z^{2}+1} \overrightarrow{\boldsymbol{\jmath}}-\frac{x^{2}+y^{2}}{\left(z^{2}+1\right)^{2}} \overrightarrow{\boldsymbol{k}}\right) .
$$

Compute $\int_{E} \overrightarrow{\boldsymbol{U}} \cdot d \overrightarrow{\boldsymbol{r}}$ where E is the edge of the drain oriented clockwise when viewed from above.
(e) Calculate $\vec{\nabla} \times \overrightarrow{\boldsymbol{U}}$.
(f) Explain why your answers in parts (a) and (d) are equal.

[^0]
[^0]: ${ }^{1}$ The denominators $\left(z^{2}+1\right)^{2}$ and $z^{2}+1$ are always positive and so affect the magnitude (but not the direction) of the motion. The $(-y \overrightarrow{\boldsymbol{\imath}}+x \overrightarrow{\boldsymbol{\jmath}})$ term represents rotation around the z-axis (counterclockwise when viewed from above). The $-z(x \overrightarrow{\boldsymbol{\imath}}+y \overrightarrow{\boldsymbol{\jmath}})$ term represents radial motion (towards the z-axis when $z>0$ and away when $z<0$). The $\overrightarrow{\boldsymbol{k}}$ term is downward motion. Hence $\overrightarrow{\boldsymbol{V}}$ is a flow rotating inward and downward around the z-axis (for $z>0$) like an actual bathtube drain.

