Problem Set #1 Due: 17 September 2010

- 1. (a) Parametrize the line in \mathbb{R}^3 that passes through the points (2, 1, 2) and (3, -1, 5).
 - (b) Find a unit vector that is perpendicular to both $2\vec{\imath} + \vec{\jmath} 3\vec{k}$ and $\vec{\imath} + \vec{k}$.
- 2. (a) For all vectors $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$, show that $\|\vec{u} \vec{v}\| \le \|\vec{u} \vec{w}\| + \|\vec{w} \vec{v}\|$.
 - (b) Suppose that \vec{x} and \vec{y} are vectors in \mathbb{R}^n . If $\|\vec{x} + \vec{y}\| = \|\vec{x} \vec{y}\|$ then prove that \vec{x} and \vec{y} are orthogonal.
- 3. (a) Find a linear function whose graph in \mathbb{R}^3 is the plane that intersects the *xy*-plane along the line y = 2x + 2 and contains the point (1, 2, 2).
 - (b) Find the equation of the plane that passes through the points A = (2, 1, 0), B = (0, 1, 3) and C = (1, 0, 1).