Problem Set \#2
 Due: 24 September 2010

1. (a) Change each of the following points from Cartesian coordinates to cylindrical coordinates and spherical coordinates:

$$
(2,1,-2), \quad(\sqrt{2}, 1,1), \quad(-2 \sqrt{3},-2,3)
$$

(b) Convert the equation $\rho \sin (\phi)=1$ from spherical coordinates to Cartesian coordinates.
(c) Let $\overrightarrow{\boldsymbol{\imath}}, \overrightarrow{\boldsymbol{\jmath}}$ and $\overrightarrow{\boldsymbol{k}}$ denote the standard basis in \mathbb{R}^{3}. Verify that the basis vectors for spherical coordinates, namely

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{e}}_{\rho}:=\frac{x \overrightarrow{\boldsymbol{\imath}}+y \overrightarrow{\boldsymbol{\jmath}}+z \overrightarrow{\boldsymbol{k}}}{\sqrt{x^{2}+y^{2}+z^{2}}}=\sin (\phi) \cos (\theta) \overrightarrow{\boldsymbol{\imath}}+\sin (\phi) \sin (\theta) \overrightarrow{\boldsymbol{\jmath}}+\cos (\phi) \overrightarrow{\boldsymbol{k}} \\
& \overrightarrow{\boldsymbol{e}}_{\phi} \\
& :=\frac{x z \overrightarrow{\boldsymbol{\imath}}+y z \overrightarrow{\boldsymbol{\jmath}}-\left(x^{2}+y^{2}\right) \overrightarrow{\boldsymbol{k}}}{\sqrt{\left(x^{2}+y^{2}\right)\left(x^{2}+y^{2}+z^{2}\right)}}=\cos (\phi) \cos (\theta) \overrightarrow{\boldsymbol{\imath}}+\cos (\phi) \sin (\theta) \overrightarrow{\boldsymbol{\jmath}}-\sin (\phi) \overrightarrow{\boldsymbol{k}} \\
& \overrightarrow{\boldsymbol{e}}_{\theta}
\end{aligned}:=\frac{-y \overrightarrow{\boldsymbol{\imath}}+x \overrightarrow{\boldsymbol{\jmath}}}{\sqrt{x^{2}+y^{2}}}=-\sin (\theta) \overrightarrow{\boldsymbol{\imath}}+\cos (\theta) \overrightarrow{\boldsymbol{\jmath}}, \quad .
$$

are mutually orthogonal unit vectors.
2. (a) Consider the surface in \mathbb{R}^{3} determined by the equation $x^{2}+x y-x z=2$. Find a function $F(x, y, z)$ such that this surface is a level set of F and find a function $f(x, y)$ such that this surface in the graph of f.
(b) Describe the surface $x^{2}+y^{2}=(2+\sin (z))^{2}$.
3. Using the $\varepsilon-\delta$ definition, prove that $\lim _{(x, y, z) \rightarrow(2,0,-1)} 3 x+y \sin (z)=6$.

