Problem Set #3 Due: 1 October 2010

1. For each of the following functions, determine if there is a value for c which makes the function continuous on \mathbb{R}^2 .

(a)
$$g(x,y) = \begin{cases} \frac{\cos(x^2 + y^2) - 1}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ c & \text{if } (x,y) = (0,0) \end{cases}$$

(b) $h(x,y) = \begin{cases} c+y & \text{if } x \le 3 \\ 5-x & \text{if } x > 3 \end{cases}$

2. Consider the function $f : \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

- (a) Compute the partial derivatives functions f_x: ℝ² → ℝ and f_y: ℝ² → ℝ.
 (b) Are the functions f_x and f_y continuous on ℝ²?
- (c) Is f differentiable at (0,0)?
- (d) Calculate the second order mixed partial derivatives $f_{xy}(0,0)$ and $f_{yx}(0,0)$.

3. Let $\ell \colon \mathbb{R} \to \mathbb{R}$ be a differentiable function. If $w = \ell\left(\frac{x+y}{xy}\right)$, then show that

$$x^2 \frac{\partial w}{\partial x} - y^2 \frac{\partial w}{\partial y} = 0.$$