Problem Set \#3
 Due: 1 October 2010

1. For each of the following functions, determine if there is a value for c which makes the function continuous on \mathbb{R}^{2}.
(a) $g(x, y)= \begin{cases}\frac{\cos \left(x^{2}+y^{2}\right)-1}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ c & \text { if }(x, y)=(0,0)\end{cases}$
(b) $h(x, y)= \begin{cases}c+y & \text { if } x \leq 3 \\ 5-x & \text { if } x>3\end{cases}$
2. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)= \begin{cases}\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Compute the partial derivatives functions $f_{x}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $f_{y}: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
(b) Are the functions f_{x} and f_{y} continuous on \mathbb{R}^{2} ?
(c) Is f differentiable at $(0,0)$?
(d) Calculate the second order mixed partial derivatives $f_{x y}(0,0)$ and $f_{y x}(0,0)$.
3. Let $\ell: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. If $w=\ell\left(\frac{x+y}{x y}\right)$, then show that

$$
x^{2} \frac{\partial w}{\partial x}-y^{2} \frac{\partial w}{\partial y}=0
$$

