1.

2.

Problem Set #4
Due: 8 October 2010

(a) Let €1,..., €, be the standard basis of R™. If F.G: R" — R3 are differentiable
at @ € R™, then show that, for 1 < i <n, we have

[D(F x G)(@)]&; = [DF(@)]e; x G(@) + F(@) x [DG(@)]é;.
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(a) Two surfaces are said to be orthogonal to each other at a point P if the normals
to their tangent planes are perpendicular at P. Show that the surfaces
2

z=1("+y*—1) and z=1(1-2>-¢°

are orthogonal at all points of intersection.
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(b) Show that the Laplacian operator V? := B + 52 + 52 in R? is given in
€z )
cylindrical coordinates by the formula
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3. Consider the function

xy®
flx,y) =< a2 + 42 if (z,y) # (0,0)

(a) Find the partial derivatives f,(0,0) and f,(0,0).

(b) If H: R — R? is defined by H (t) = at?+ bt for constants a and b, then show
that f o H is differentiable and find D(f o H)(0).

(c) Calculate Df(0,0)DH (0). How can this answer be reconciled with the answer
in part (b) and the chain rule?
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