Problem Set \#4
 Due: 8 October 2010

1. (a) Let $\overrightarrow{\boldsymbol{e}}_{1}, \ldots, \overrightarrow{\boldsymbol{e}}_{n}$ be the standard basis of \mathbb{R}^{n}. If $\overrightarrow{\boldsymbol{F}}, \overrightarrow{\boldsymbol{G}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{3}$ are differentiable at $\overrightarrow{\boldsymbol{a}} \in \mathbb{R}^{n}$, then show that, for $1 \leq i \leq n$, we have

$$
[D(\overrightarrow{\boldsymbol{F}} \times \overrightarrow{\boldsymbol{G}})(\overrightarrow{\boldsymbol{a}})] \overrightarrow{\boldsymbol{e}}_{i}=[D \overrightarrow{\boldsymbol{F}}(\overrightarrow{\boldsymbol{a}})] \vec{e}_{i} \times \overrightarrow{\boldsymbol{G}}(\overrightarrow{\boldsymbol{a}})+\overrightarrow{\boldsymbol{F}}(\overrightarrow{\boldsymbol{a}}) \times[D \overrightarrow{\boldsymbol{G}}(\overrightarrow{\boldsymbol{a}})] \overrightarrow{\boldsymbol{e}}_{i} .
$$

(b) Suppose that $n=3, \overrightarrow{\boldsymbol{F}}(\overrightarrow{\boldsymbol{a}})=2 \overrightarrow{\boldsymbol{\imath}}+\overrightarrow{\boldsymbol{\jmath}}+2 \overrightarrow{\boldsymbol{k}}, \overrightarrow{\boldsymbol{G}}(\overrightarrow{\boldsymbol{a}})=\overrightarrow{\boldsymbol{\imath}}+2 \overrightarrow{\boldsymbol{\jmath}}+\overrightarrow{\boldsymbol{k}}$,

$$
D \overrightarrow{\boldsymbol{F}}(\overrightarrow{\boldsymbol{a}})=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right] \quad \text { and } \quad D \overrightarrow{\boldsymbol{G}}(\overrightarrow{\boldsymbol{a}})=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 1 \\
1 & 0 & -1
\end{array}\right]
$$

Find $[D(\overrightarrow{\boldsymbol{F}} \times \overrightarrow{\boldsymbol{G}})(\overrightarrow{\boldsymbol{a}})](\overrightarrow{\boldsymbol{\imath}}+\overrightarrow{\boldsymbol{\jmath}}+\overrightarrow{\boldsymbol{k}})$.
2. (a) Two surfaces are said to be orthogonal to each other at a point P if the normals to their tangent planes are perpendicular at P. Show that the surfaces

$$
z=\frac{1}{2}\left(x^{2}+y^{2}-1\right) \quad \text { and } \quad z=\frac{1}{2}\left(1-x^{2}-y^{2}\right)
$$

are orthogonal at all points of intersection.
(b) Show that the Laplacian operator $\nabla^{2}:=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$ in \mathbb{R}^{3} is given in cylindrical coordinates by the formula

$$
\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}+\frac{\partial^{2}}{\partial z^{2}}
$$

3. Consider the function

$$
f(x, y)= \begin{cases}\frac{x y^{2}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Find the partial derivatives $f_{x}(0,0)$ and $f_{y}(0,0)$.
(b) If $\overrightarrow{\boldsymbol{H}}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ is defined by $\overrightarrow{\boldsymbol{H}}(t)=a t \overrightarrow{\boldsymbol{\imath}}+b t \overrightarrow{\boldsymbol{\jmath}}$ for constants a and b, then show that $f \circ \overrightarrow{\boldsymbol{H}}$ is differentiable and find $D(f \circ \overrightarrow{\boldsymbol{H}})(0)$.
(c) Calculate $D f(0,0) D \overrightarrow{\boldsymbol{H}}(0)$. How can this answer be reconciled with the answer in part (b) and the chain rule?

