Problem Set #5 Due: 15 October 2010

1. Consider the surface defined by the equation

 $x^{3}z + x^{2}y^{2} + \sin(yz) = -3.$

- (a) Find an equation for the plane tangent to this surface at the point (-1, 0, 3).
- (b) Parametrize the line normal to this surface at the point (-1, 0, 3).
- 2. Consider the path $\vec{\beta}: (0, \pi) \to \mathbb{R}^2$ given by $\vec{\beta}(t) := \sin(t)\vec{\imath} + (\cos(t) + \ln(\tan(t/2)))\vec{\jmath}$. The underlying curve is called the *tractrix*.
 - (a) Show that derivative $\vec{\beta}'(t)$ is nonzero at everywhere except $t = \pi/2$.
 - (b) Show that the length of the segment of the tangent of the tractrix between the point of tangency and the *y*-axis is constantly equal to 1.

Hint. The identity $\sin(2\theta) = 2\sin(\theta)\cos(\theta)$ may be useful in part (a).

3. (a) Show that the differentiable path $\vec{\gamma} \colon \mathbb{R} \setminus \{\vec{0}\} \to \mathbb{R}^3$ given by

$$\vec{\gamma}(t) = e^{2t}\vec{\imath} + \ln|t|\vec{\jmath} + \frac{1}{t}\vec{k}$$

is a flow line of the vector field $\vec{F} : \mathbb{R}^3 \to \mathbb{R}^3$ defined by $\vec{F}(x, y, z) = 2x\vec{\imath} + z\vec{\jmath} - z^2\vec{k}$.

(b) Find the flow lines of the vector field $\vec{G} \colon \mathbb{R}^2 \to \mathbb{R}^2$ given by $\vec{G}(x, y) = x\vec{\imath} + 2y\vec{\jmath}$.