Problem Set \#5
 Due: 15 October 2010

1. Consider the surface defined by the equation

$$
x^{3} z+x^{2} y^{2}+\sin (y z)=-3 .
$$

(a) Find an equation for the plane tangent to this surface at the point $(-1,0,3)$.
(b) Parametrize the line normal to this surface at the point $(-1,0,3)$.
2. Consider the path $\overrightarrow{\boldsymbol{\beta}}:(0, \pi) \rightarrow \mathbb{R}^{2}$ given by $\overrightarrow{\boldsymbol{\beta}}(t):=\sin (t) \overrightarrow{\boldsymbol{\imath}}+(\cos (t)+\ln (\tan (t / 2))) \overrightarrow{\boldsymbol{\jmath}}$. The underlying curve is called the tractrix.
(a) Show that derivative $\overrightarrow{\boldsymbol{\beta}}^{\prime}(t)$ is nonzero at everywhere except $t=\pi / 2$.
(b) Show that the length of the segment of the tangent of the tractrix between the point of tangency and the y-axis is constantly equal to 1 .

Hint. The identity $\sin (2 \theta)=2 \sin (\theta) \cos (\theta)$ may be useful in part (a).
3. (a) Show that the differentiable path $\vec{\gamma}: \mathbb{R} \backslash\{\overrightarrow{\mathbf{0}}\} \rightarrow \mathbb{R}^{3}$ given by

$$
\overrightarrow{\boldsymbol{\gamma}}(t)=e^{2 t} \overrightarrow{\boldsymbol{\imath}}+\ln |t| \overrightarrow{\boldsymbol{\jmath}}+\frac{1}{t} \overrightarrow{\boldsymbol{k}}
$$

is a flow line of the vector field $\overrightarrow{\boldsymbol{F}}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $\overrightarrow{\boldsymbol{F}}(x, y, z)=2 x \overrightarrow{\boldsymbol{\imath}}+z \overrightarrow{\boldsymbol{\jmath}}-z^{2} \overrightarrow{\boldsymbol{k}}$.
(b) Find the flow lines of the vector field $\overrightarrow{\boldsymbol{G}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $\overrightarrow{\boldsymbol{G}}(x, y)=x \overrightarrow{\boldsymbol{\imath}}+2 y \overrightarrow{\boldsymbol{\jmath}}$.

