Problem Set #6 Due: 22 October 2010

- 1. (a) For a vector field $\vec{F} : \mathbb{R}^3 \to \mathbb{R}^3$, show that $\vec{\nabla} \cdot (\vec{\nabla} \times \vec{F}) = 0$; in other words, the curl of a vector field is incompressible.
 - (b) If $f, g: \mathbb{R}^3 \to \mathbb{R}$ be scalar fields. If $\vec{G}: \mathbb{R}^3 \to \mathbb{R}^3$ is the vector field defined by $\vec{G} = f \vec{\nabla} g$, then show $\vec{\nabla} \times \vec{G}$ is everywhere perpendicular to \vec{G} .
- **2.** Find a vector field $\vec{H} : \mathbb{R}^3 \to \mathbb{R}^3$ such that $\vec{\nabla} \times \vec{H} = 2\vec{\imath} 3\vec{\jmath} + 4\vec{k}$.

Hint. Try $\vec{H} := \vec{v} \times \vec{r}$ where $\vec{v} \in \mathbb{R}^3$ is a fixed vector and the vector field $\vec{r} : \mathbb{R}^3 \to \mathbb{R}^3$ is given by $\vec{r}(x, y, z) := x\vec{i} + y\vec{j} + z\vec{k}$.

- 3. (a) If p(x, y) gives the pollution density, in micrograms per square meter, and x and y are measured in meters, give the units and practical interpretation of $\int_{B} p(x, y) \, dA$.
 - (b) Using Riemann sums with four equal subdivisions in each direction, find upper and lower bounds for the volume under the graph of h(x, y) = 2 + xy over the rectangle $R = [0, 2] \times [0, 4]$.