Problem Set \#6
 Due: 22 October 2010

1. (a) For a vector field $\overrightarrow{\boldsymbol{F}}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, show that $\overrightarrow{\boldsymbol{\nabla}} \cdot(\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{F}})=0$; in other words, the curl of a vector field is incompressible.
(b) If $f, g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be scalar fields. If $\vec{G}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is the vector field defined by $\overrightarrow{\boldsymbol{G}}=f \vec{\nabla} g$, then show $\vec{\nabla} \times \overrightarrow{\boldsymbol{G}}$ is everywhere perpendicular to $\overrightarrow{\boldsymbol{G}}$.
2. Find a vector field $\overrightarrow{\boldsymbol{H}}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{H}}=2 \overrightarrow{\boldsymbol{\imath}}-3 \overrightarrow{\boldsymbol{\jmath}}+4 \overrightarrow{\boldsymbol{k}}$.

Hint. Try $\overrightarrow{\boldsymbol{H}}:=\overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{r}}$ where $\overrightarrow{\boldsymbol{v}} \in \mathbb{R}^{3}$ is a fixed vector and the vector field $\overrightarrow{\boldsymbol{r}}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is given by $\overrightarrow{\boldsymbol{r}}(x, y, z):=x \overrightarrow{\boldsymbol{\imath}}+y \overrightarrow{\boldsymbol{\jmath}}+z \overrightarrow{\boldsymbol{k}}$.
3. (a) If $p(x, y)$ gives the pollution density, in micrograms per square meter, and x and y are measured in meters, give the units and practical interpretation of $\int_{R} p(x, y) d A$.
(b) Using Riemann sums with four equal subdivisions in each direction, find upper and lower bounds for the volume under the graph of $h(x, y)=2+x y$ over the rectangle $R=[0,2] \times[0,4]$.

