## Problem Set \#8 <br> Due: 5 November 2010

1. (a) Find the volume of an ice cream cone bounded by the cone $z=\sqrt{x^{2}+y^{2}}$ and the hemisphere $z=\sqrt{8-x^{2}-y^{2}}$.
(b) Find the average distance to the origin for points in the ice cream cone region bounded by the hemisphere $z=\sqrt{8-x^{2}-y^{2}}$ and the cone $z=\sqrt{x^{2}+y^{2}}$.
2. (a) A bead is made by drilling a cylindrical hole of radius 1 mm through a sphere of radius 5 mm . Set up a triple integral in cylindrical coordinates representing the volume of the bead. Evaluate the integral.
(b) Use the change of variables $x=u-u v, y=u v$, to calculate $\int_{R} \frac{1}{x+y} d y d x$ where $R$ is the region bounded by $x=0, y=0, x+y=1$ and $x+y=4$.
3. Suppose $L$ is the line segment from the origin to the point $(4,12)$ and $\overrightarrow{\boldsymbol{F}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the vector field defined by $\overrightarrow{\boldsymbol{F}}(x, y):=x y \overrightarrow{\boldsymbol{\imath}}+x \overrightarrow{\boldsymbol{\jmath}}$.
(a) Is line integral $\int_{L} \overrightarrow{\boldsymbol{F}} \cdot d \overrightarrow{\boldsymbol{r}}$ greater than, less than, or equal to zero? Give a geometric explanation.
(b) A parameterization of $L$ is $\vec{\gamma}:[0,4] \rightarrow \mathbb{R}^{2}$ where $\vec{\gamma}(t):=t \overrightarrow{\boldsymbol{\imath}}+3 t \overrightarrow{\boldsymbol{\jmath}}$. Use this to compute $\int_{L} \overrightarrow{\boldsymbol{F}} \cdot d \overrightarrow{\boldsymbol{r}}$.
(c) Suppose a particle leaves the point ( 0,0 ), moves along the line towards the point $(4,12)$, stops before reaching it and backs up, stops again and reverses direction, then completes its journey to the endpoint. All travel takes place along the line segment joining the point $(0,0)$ to the point $(4,12)$. If we call this path $L^{\prime}$, explain why $\int_{L^{\prime}} \overrightarrow{\boldsymbol{F}} \cdot d \overrightarrow{\boldsymbol{r}}=\int_{L} \overrightarrow{\boldsymbol{F}} \cdot d \overrightarrow{\boldsymbol{r}}$.
(d) A parameterization for a path like $L^{\prime}$ is given by $\overrightarrow{\boldsymbol{\beta}}:[0,4] \rightarrow \mathbb{R}^{2}$ with

$$
\overrightarrow{\boldsymbol{\beta}}(t)=\frac{1}{3}\left(t^{3}-6 t^{2}+11 t\right) \overrightarrow{\boldsymbol{\imath}}+\left(t^{3}-6 t^{2}+11 t\right) \overrightarrow{\boldsymbol{\jmath}} .
$$

Check that this parameterization begins at the point $(0,0)$ and ends at the point $(4,12)$. Also check that all points of $L^{\prime}$ lie on the line segment connecting the point $(0,0)$ to the point $(4,12)$. What are the values of $t$ at which the particle changes direction?
(e) Find $\int_{L^{\prime}} \overrightarrow{\boldsymbol{F}} \cdot d \overrightarrow{\boldsymbol{r}}$ using the parameterization in part (d).

