Problem Set \#9

Due: 12 November 2010

1. (a) Suppose that $\vec{\gamma}:[a, b] \rightarrow \mathbb{R}^{3}$ with $\vec{\gamma}(t):=x(t) \overrightarrow{\boldsymbol{\imath}}+y(t) \overrightarrow{\boldsymbol{\jmath}}+z(t) \overrightarrow{\boldsymbol{k}}$ is a smooth parameterization of the curve C with endpoints $\overrightarrow{\boldsymbol{p}}:=(x(a), y(a), z(a))$ and $\boldsymbol{q}:=(x(b), y(b), z(b))$. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a smooth function. If $h: \mathbb{R} \rightarrow \mathbb{R}$ is the composite function $h(t):=f(\vec{\gamma}(t))$, then compute $h^{\prime}(t)$ and show that

$$
\int_{C} \vec{\nabla} f \cdot d \overrightarrow{\boldsymbol{r}}=f(\overrightarrow{\boldsymbol{q}})-f(\overrightarrow{\boldsymbol{p}}) .
$$

(b) If H is the helix parametrized by $\vec{\varepsilon}:[0,1.25 \pi] \rightarrow \mathbb{R}^{3}$ where

$$
\overrightarrow{\boldsymbol{\varepsilon}}(t):=\cos (t) \overrightarrow{\boldsymbol{\imath}}+\sin (t) \overrightarrow{\boldsymbol{\jmath}}+t \overrightarrow{\boldsymbol{k}},
$$

then evaluate $\int_{H} y z^{2} e^{x y z^{2}} d x+x z^{2} e^{x y z^{2}} d y+2 x y z e^{x y z^{2}} d z$.
2. (a) If $\overrightarrow{\boldsymbol{F}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by $\overrightarrow{\boldsymbol{F}}(x, y):=x \overrightarrow{\boldsymbol{\jmath}}$, then show that the line integral of vector field $\overrightarrow{\boldsymbol{F}}$ around a closed curve in the $x y$-plane, oriented as in Green's Theorem, measures the area of the region enclosed by the curve.
(b) Calculate the area of the region within the folium of Descartes $x^{3}+y^{3}=3 x y$; it is parameterized by $\vec{\gamma}:[0, \infty) \rightarrow \mathbb{R}^{2}$ where

$$
\overrightarrow{\boldsymbol{\gamma}}(t):=\left(\frac{3 t}{1+t^{3}}\right) \overrightarrow{\boldsymbol{\imath}}+\left(\frac{3 t^{2}}{1+t^{3}}\right) \overrightarrow{\boldsymbol{\jmath}} .
$$

3. Consider the vector field $\overrightarrow{\boldsymbol{F}}: \mathbb{R} \times(0, \infty) \rightarrow \mathbb{R}^{2}$ given by

$$
\overrightarrow{\boldsymbol{F}}(x, y):=\frac{x+x y^{2}}{y^{2}} \overrightarrow{\boldsymbol{\imath}}-\frac{x^{2}+1}{y^{3}} \overrightarrow{\boldsymbol{\jmath}} .
$$

(a) Determine if $\overrightarrow{\boldsymbol{F}}$ is path-independent.
(b) Find the work done by $\overrightarrow{\boldsymbol{F}}$ in moving a particle along the curve $y=1+x-x^{2}$ from $(0,1)$ to $(1,1)$.

