Problem Set #9 Due: 12 November 2010

1. (a) Suppose that $\vec{\gamma} : [a, b] \to \mathbb{R}^3$ with $\vec{\gamma}(t) := x(t)\vec{\imath} + y(t)\vec{\jmath} + z(t)\vec{k}$ is a smooth parameterization of the curve C with endpoints $\vec{p} := (x(a), y(a), z(a))$ and $\vec{q} := (x(b), y(b), z(b))$. Let $f : \mathbb{R}^3 \to \mathbb{R}$ be a smooth function. If $h : \mathbb{R} \to \mathbb{R}$ is the composite function $h(t) := f(\vec{\gamma}(t))$, then compute h'(t) and show that

$$\int_C \vec{\nabla} f \cdot d\vec{r} = f(\vec{q}) - f(\vec{p}) \,.$$

(b) If H is the helix parametrized by $\vec{\boldsymbol{\varepsilon}} : [0, 1.25\pi] \to \mathbb{R}^3$ where

$$\vec{\boldsymbol{\varepsilon}}(t) := \cos(t)\vec{\boldsymbol{\imath}} + \sin(t)\vec{\boldsymbol{\jmath}} + t\,\vec{\boldsymbol{k}}\,,$$

then evaluate
$$\int_{H} yz^{2}e^{xyz^{2}}\,dx + xz^{2}e^{xyz^{2}}\,dy + 2xyze^{xyz^{2}}\,dz.$$

- 2. (a) If F: R² → R² is given by F(x, y) := xj, then show that the line integral of vector field F around a closed curve in the xy-plane, oriented as in Green's Theorem, measures the area of the region enclosed by the curve.
 - (b) Calculate the area of the region within the folium of Descartes $x^3 + y^3 = 3xy$; it is parameterized by $\vec{\gamma} : [0, \infty) \to \mathbb{R}^2$ where

$$\vec{\gamma}(t) := \left(rac{3t}{1+t^3}
ight) \vec{\imath} + \left(rac{3t^2}{1+t^3}
ight) \vec{\jmath}.$$

3. Consider the vector field $\vec{F} : \mathbb{R} \times (0, \infty) \to \mathbb{R}^2$ given by

$$ec{oldsymbol{F}}(x,y):=rac{x+xy^2}{y^2}ec{oldsymbol{r}}-rac{x^2+1}{y^3}ec{oldsymbol{r}}$$

- (a) Determine if \vec{F} is path-independent.
- (b) Find the work done by \vec{F} in moving a particle along the curve $y = 1 + x x^2$ from (0, 1) to (1, 1).