Problem Set \#10
 Due: 19 November 2010

1. (a) Find a parametrization for the hyperboloid $x^{2}+y^{2}-z^{2}=25$;
(b) Find an expression for a unit normal to this surface.
(c) Find an equation for the plane tangent to the hyperboloid at the point $(a, b, 0)$ where $a^{2}+b^{2}=25$.
(d) Show that the lines $t \mapsto(a-t b, b+t a, 5 t)$ and $t \mapsto(a+t b, b-t a, 5 t)$ lie in the surface and in the tangent plane found in part (c).
2. Let $\overrightarrow{\boldsymbol{H}}(x, y, z):=\left(e^{x y}+3 z+5\right) \overrightarrow{\boldsymbol{\imath}}+\left(e^{x y}+5 z+3\right) \overrightarrow{\boldsymbol{\jmath}}+\left(3 z+e^{x y}\right) \overrightarrow{\boldsymbol{k}}$. Calculate the flux of $\overrightarrow{\boldsymbol{H}}$ through the square S of side length 2 with one vertex at the origin, one edge along the positive y-axis, one edge in the $x z$-plane with $x>0, z>0$ and normal $\overrightarrow{\boldsymbol{n}}=\overrightarrow{\boldsymbol{\imath}}-\overrightarrow{\boldsymbol{k}}$.
3. (a) The torus T can be parametrized by $\overrightarrow{\boldsymbol{\tau}}:[0,2 \pi] \times[0,2 \pi] \rightarrow \mathbb{R}^{3}$ where $a>b>0$ and $\overrightarrow{\boldsymbol{\tau}}(\theta, \phi)=(a+b \cos (\theta)) \cos (\phi) \overrightarrow{\boldsymbol{\imath}}+(a+b \cos (\theta)) \sin (\phi) \overrightarrow{\boldsymbol{\jmath}}+b \sin (\theta) \overrightarrow{\boldsymbol{k}}$. Find the surface area of T.
(b) Find the area of the ellipse E on the plane $2 x+y+z=2$ cut out by the circular cylinder $x^{2}+y^{2}=2 x$.
