Problem Set #11 Due: 26 November 2010

- **1.** Evaluate $\int_{Q} \vec{E} \cdot d\vec{S}$ where $\vec{E}(x, y, z) := ze^{x^{2}}\vec{\imath} + 3y\vec{\jmath} + (2 yz^{7})\vec{k}$ and Q is the union of the five "upper" faces of the unit cube $[0, 1] \times [0, 1] \times [0, 1]$ orient outward. The face z = 0 is not part of Q.
- **2.** Let *S* be the surface defined by $z = e^{1-x^2-y^2}$ with $z \ge 1$ oriented upward and let $\vec{H}(x, y, z) := x\vec{\imath} + y\vec{\jmath} + (2-2z)\vec{k}$. Calculate $\int_S \vec{H} \cdot d\vec{S}$.
- 3. (a) Consider a vector field $\vec{F} : \mathbb{R}^3 \to \mathbb{R}^3$ such that $\vec{\nabla} \cdot \vec{F}(x, y, z) = x^2 + y^2 + 3$. Find an oriented surface M such that the flux integral $\int_M \vec{F} \cdot d\vec{S}$ is negative or explain why no such surface exists.
 - (b) Find the flux of the vector field $\vec{G}(x, y, z) = xy\vec{\imath} + yz\vec{\jmath} + zx\vec{k}$ out of a sphere of radius 1 centered at the origin.