JORDAN CANONICAL FORM

Given $d \in \mathbb{N}$ and $\lambda \in \mathbb{K}$, the Jordan block $J_d(\lambda)$ is the upper-triangular $(d \times d)$ -matrix

$$J_d(\lambda) := \begin{bmatrix} \lambda & 1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda & 1 \\ 0 & 0 & 0 & \cdots & 0 & \lambda \end{bmatrix}$$

The scalar λ appears d times on the main diagonal and +1 appears (d-1) times on the superdiagonal. All other entries are zero. Note $J_1(\lambda) = [\lambda]$.

Theorem. Let $T \in \text{End}(V)$ and $n = \dim V$. If the minimal polynomial of T is the product of linear factors over \mathbb{K} , then there exists a basis of V such that

$$\mathcal{M}(T) = J = \begin{bmatrix} J_{d_1}(\lambda_1) & 0 & \cdots & 0 \\ 0 & J_{d_2}(\lambda_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & J_{d_m}(\lambda_m) \end{bmatrix}$$

where $d_1 + \cdots + d_m = n$. The matrix J is unique up to the order of the diagonal blocks.

Observations/Facts.

- (a) The number m of Jordan blocks (counting multiple occurrences of the same block) is the number of linearly independent eigenvectors of J.
- (b) The matrix J is diagonalizable if and only if m = n.
- (c) The number of Jordan blocks corresponding to a given eigenvalue is the geometric multiplicity of the eigenvalue, which is the dimension of the associated eigenspace.
- (d) The sum of the orders of all the Jordan blocks corresponding to a given eigenvalue is the algebraic multiplicity of the eigenvalue.
- (e) A Jordan matrix is *not* completely determined in general by a knowledge of the eigenvalues and the dimension of their generalized and standard eigenspaces. One must also know the sizes of the Jordan blocks corresponding to each eigenvalue.
- (f) The size of the largest Jordan block corresponding to an eigenvalue λ is the multiplicity of λ as a root of the minimal polynomial.
- (g) The sizes of the Jordan blocks corresponding to a given eigenvalue are determined by a knowledge of the ranks of certain powers. For example, if

and $(J - 2I)^3 = 0$. Thus we know that

$$(J-2I)^3 = 0$$
 rank $(J-2I)^2 = 1$ rank $(J-2I) = 4$.

This list of numbers is sufficient to determine the block structure of J. The fact that $(J - 2I)^3$ tells us that the largest block has order 3. The rank of $(J - 2I)^2$ will be the number of blocks of order 3, so there is only one. The rank of (J - 2I) is the twice the number of blocks of order 3 plus the number of blocks of order 2, so there are two of them. The number of blocks of order 1 is $8 - (2 \times 2) - 3 = 1$. A similar procedure can be applied to direct sums of Jordan blocks of any size.