Problem Set \#1
 Due: Friday, January 12, 2007

1. Give an example of a nonempty subset U of \mathbb{R}^{2} such that U is closed under scalar multiplication, but U is not a subspace of \mathbb{R}^{2}.
2. Let \mathbb{K} be any field and let $\mathbb{K}^{\mathbb{K}}$ denote the set of all functions from \mathbb{K} to \mathbb{K}. The set $\mathbb{K}^{\mathbb{K}}$ is a vector space over \mathbb{K} with pointwise operations:

$$
(f+g)(b):=f(b)+g(b) \quad(a f)(b):=a(f(b))
$$

for $f, g \in \mathbb{K}^{S}$ and $a, b \in \mathbb{K}$. A function $f \in \mathbb{K}^{\mathbb{K}}$ is even if $f(-b)=f(b)$ for all $b \in \mathbb{K}$ and odd if $f(-b)=-f(b)$ for all $b \in \mathbb{K}$. Prove that the set of all even functions and the set of all odd functions are subspaces of $\mathbb{K}^{\mathbb{K}}$.
3. Let V be a vector space. Prove that the union of two subspaces of V is a subspace of V if and only if one of the subspaces is contained in the other.

