Problem Set #1 Due: Friday, January 12, 2007

- **1.** Give an example of a nonempty subset U of \mathbb{R}^2 such that U is closed under scalar multiplication, but U is not a subspace of \mathbb{R}^2 .
- **2.** Let \mathbb{K} be any field and let $\mathbb{K}^{\mathbb{K}}$ denote the set of all functions from \mathbb{K} to \mathbb{K} . The set $\mathbb{K}^{\mathbb{K}}$ is a vector space over \mathbb{K} with pointwise operations:

$$(f+g)(b) := f(b) + g(b)$$
 $(af)(b) := a(f(b))$

for $f, g \in \mathbb{K}^S$ and $a, b \in \mathbb{K}$. A function $f \in \mathbb{K}^{\mathbb{K}}$ is *even* if f(-b) = f(b) for all $b \in \mathbb{K}$ and *odd* if f(-b) = -f(b) for all $b \in \mathbb{K}$. Prove that the set of all even functions and the set of all odd functions are subspaces of $\mathbb{K}^{\mathbb{K}}$.

3. Let V be a vector space. Prove that the union of two subspaces of V is a subspace of V if and only if one of the subspaces is contained in the other.