Problem Set #2 Due: Friday, January 19, 2007

- **1.** The transpose A^{T} of an $(m \times n)$ -matrix A is obtained from A by interchanging the rows with the columns; in other words if $A = [a_{i,j}]$ then $A^{\mathsf{T}} = [a_{j,i}]$. A matrix A is symmetric if $A^{\mathsf{T}} = A$ and skew-symmetric if $A^{\mathsf{T}} = -A$.
 - (a) Prove that the set W_{skew} of all skew-symmetric $(n \times n)$ -matrices is a subspace of $\mathbb{Q}^{n \times n}$.
 - (b) Let W_{sym} be the subspace of $\mathbb{Q}^{n \times n}$ consisting of all symmetric matrices. Prove that $\mathbb{Q}^{n \times n} = W_{\text{sym}} \oplus W_{\text{skew}}$.
- **2.** Prove or give a counterexample to following: if U_1 , U_2 and W are subspaces of V such that $U_1 \oplus W = U_2 \oplus W$ then $U_1 = U_2$.
- **3.** Let $P := \mathbb{R}[t]_{\leq 2}$ the real vector space of all polynomial functions of degree at most 2 and consider $V := \mathbb{R}^P$, the real vector space of all functions from P to \mathbb{R} . Determine the linear independence or dependence of the following lists (f_1, f_2, f_3) in V.
 - (a) for $p \in P$, let $f_1(p) := p(0)$, $f_2(p) := p(1)$ and $f_3(p) := p(2)$; (b) for $p \in P$, let $f_1(p) := p(0)$, $f_2(p) := \int_0^1 p(t) dt$ and $f_3(p) := \int_{-1}^1 p(t) dt$.