Problem Set #3

Due: Friday, January 26, 2007

- 1. The conjugate transpose of a complex $(m \times n)$ -matrix Z is the $(n \times m)$ -matrix Z^* obtained by interchanging the rows and columns and then taking the complex conjugate of each entry. A complex $(n \times n)$ -matrix Z is Hermitian if $Z = Z^*$.
 - (a) Show that the Hermitian matrices form a real vector space.
 - (b) Find a basis for this space and determine its dimension.
- 2. (a) Prove or disprove: there exists a basis (p_0, p_1, p_2, p_3) of $\mathbb{K}[t]_{\leq 3}$ such that none of the polynomials p_0, p_1, p_2, p_3 has degree 2.
 - (b) Let m be a positive integer and suppose q_0, q_1, \ldots, q_m are polynomials in $\mathbb{K}[t]_{\leq m}$ such that $q_j(-5) = 0$ for $0 \leq j \leq m$. Show that (q_0, q_1, \ldots, q_m) is linear dependent.
- **3.** Suppose $T \in \text{Hom}(V, \mathbb{K})$ and the vector $u \in V$ does not lie in Ker(T). Prove that $V = \text{Ker}(T) \oplus \text{Span}(u)$.