Problem Set \#3

Due: Friday, January 26, 2007

1. The conjugate transpose of a complex $(m \times n)$-matrix Z is the $(n \times m)$-matrix Z^{*} obtained by interchanging the rows and columns and then taking the complex conjugate of each entry. A complex $(n \times n)$-matrix Z is Hermitian if $Z=Z^{*}$.
(a) Show that the Hermitian matrices form a real vector space.
(b) Find a basis for this space and determine its dimension.
2. (a) Prove or disprove: there exists a basis $\left(p_{0}, p_{1}, p_{2}, p_{3}\right)$ of $\mathbb{K}[t]_{\leq 3}$ such that none of the polynomials $p_{0}, p_{1}, p_{2}, p_{3}$ has degree 2 .
(b) Let m be a positive integer and suppose $q_{0}, q_{1}, \ldots, q_{m}$ are polynomials in $\mathbb{K}[t]_{\leq m}$ such that $q_{j}(-5)=0$ for $0 \leq j \leq m$. Show that $\left(q_{0}, q_{1}, \ldots, q_{m}\right)$ is linear dependent.
3. Suppose $T \in \operatorname{Hom}(V, \mathbb{K})$ and the vector $u \in V$ does not lie in $\operatorname{Ker}(T)$. Prove that $V=\operatorname{Ker}(T) \oplus \operatorname{Span}(u)$.
