Problem Set \#4
 Due: Friday, February 2, 2007

1. Let $L: C^{2}([0,1]) \rightarrow C([0,1])$ be defined by $L f=f^{\prime \prime}$.
(a) Show that L has no left inverses.

Hint: L is not injective.
(b) Show that the operators G_{1} and G_{2}, defined as follows, are right inverses:

$$
\begin{aligned}
& \left(G_{1} f\right)(x)=\int_{0}^{x}(x-t) f(t) d t, \\
& \left(G_{2} f\right)(x)=\int_{0}^{1} g(x, y) f(y) d y, \quad \text { where } g(x, y)= \begin{cases}x(y-1) & x<y \\
y(x-1) & y \leq x .\end{cases}
\end{aligned}
$$

(c) Let U_{1} be the set of functions in $C^{2}([0,1])$ satisfying $f(0)=f^{\prime}(0)=0$. Show that $G_{1}=L^{-1}$ if the domain of L is restricted to U_{1}.
(d) Let U_{2} be the set of functions in $C^{2}([0,1])$ satisfying $f(0)=f(1)=0$. Show that $G_{2}=L^{-1}$ if the domain of L is restricted to U_{2}.
2. Let V be a finite dimensional vector space and consider $S, T \in \operatorname{End}(V)$.
(a) Show that $S T$ is invertible if and only if both S and T are invertible.
(b) Prove that $S T=I$ if and only if $T S=I$.
(c) Give an example illustrating that both (a) and (b) are false over an infinite dimensional vector space.
3. Define $J: \mathbb{R}[t]_{\leq 2} \rightarrow \mathbb{R}[t]_{\leq 2}$ by $(J p)(t)=\frac{1}{2} \int_{-1}^{1}\left(3+6 s t-15 s^{2} t^{2}\right) p(s) d s$.
(a) Find the matrix $\mathcal{M}(J)$ with respect to the basis $\left(1, t, t^{2}\right)$.
(b) Find a basis for $\operatorname{Ker} J$ and $\operatorname{Im} J$.
(c) Show that J^{-1} exists and find an expression for $J^{-1}\left(a+b t+c t^{2}\right)$.
(d) Find p such that $J(p)=(1+t)^{2}$.
(e) Find q such that $J^{2}(q)=t^{2}$.

