Problem Set #4 Due: Friday, February 2, 2007

- 1. Let $L \colon C^2([0,1]) \to C([0,1])$ be defined by Lf = f''.
 - (a) Show that L has no left inverses. *Hint*: L is not injective. (b) Show that the operators G_1 and G_2 , defined as follows, are right inverses:

$$(G_1 f)(x) = \int_0^x (x - t) f(t) dt,$$

$$(G_2 f)(x) = \int_0^1 g(x, y) f(y) dy, \quad \text{where } g(x, y) = \begin{cases} x(y - 1) & x < y \\ y(x - 1) & y \le x. \end{cases}$$

- (c) Let U_1 be the set of functions in $C^2([0,1])$ satisfying f(0) = f'(0) = 0. Show that $G_1 = L^{-1}$ if the domain of L is restricted to U_1 .
- (d) Let U_2 be the set of functions in $C^2([0,1])$ satisfying f(0) = f(1) = 0. Show that $G_2 = L^{-1}$ if the domain of L is restricted to U_2 .
- **2.** Let *V* be a finite dimensional vector space and consider $S, T \in End(V)$.
 - (a) Show that ST is invertible if and only if both S and T are invertible.
 - (b) Prove that ST = I if and only if TS = I.
 - (c) Give an example illustrating that both (a) and (b) are false over an infinite dimensional vector space.
- **3. Define** $J: \mathbb{R}[t]_{\leq 2} \to \mathbb{R}[t]_{\leq 2}$ by $(Jp)(t) = \frac{1}{2} \int_{-1}^{1} (3 + 6st 15s^2t^2)p(s) ds$.
 - (a) Find the matrix $\mathcal{M}(J)$ with respect to the basis $(1, t, t^2)$.
 - (b) Find a basis for $\operatorname{Ker} J$ and $\operatorname{Im} J$.
 - (c) Show that J^{-1} exists and find an expression for $J^{-1}(a + bt + ct^2)$.
 - (d) Find p such that $J(p) = (1 + t)^2$.
 - (e) Find q such that $J^2(q) = t^2$.