Problem Set \#5
 Due: Friday, February 9, 2007

1. Suppose that a_{0}, \ldots, a_{m} are distinct elements in \mathbb{K} and that b_{0}, \ldots, b_{m} are elements in \mathbb{K}. Prove that there exists a unique polynomial $p \in \mathbb{K}[t]_{\leq m}$ such that $p\left(a_{j}\right)=b_{j}$ for $0 \leq j \leq m$.
2. Consider $T \in \operatorname{Hom}\left(\mathbb{R}[x]_{\leq 2}, \mathbb{R}[x]_{\leq 2}\right)$ defined by

$$
(T f)(x)=\int_{-1}^{1}(x-y)^{2} f(y) d y-2 f(0) x^{2} \quad \text { for all } f \in \mathbb{R}[x]_{\leq 2} .
$$

Find all eigenvalues and eigenvectors for T.
3. Suppose n is a positive integer and $T \in \operatorname{End}\left(\mathbb{K}^{n}\right)$ is defined by

$$
T\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}+\cdots+x_{n}, \ldots, x_{1}+\cdots+x_{n}\right) ;
$$

in other words, T is the operator whose matrix (with respect to the standard basis) consists of all l's. Find all eigenvalues and eigenvectors of T.

