Problem Set #5 Due: Friday, February 9, 2007

- **1.** Suppose that a_0, \ldots, a_m are distinct elements in \mathbb{K} and that b_0, \ldots, b_m are elements in \mathbb{K} . Prove that there exists a unique polynomial $p \in \mathbb{K}[t]_{\leq m}$ such that $p(a_j) = b_j$ for $0 \leq j \leq m$.
- **2.** Consider $T \in Hom(\mathbb{R}[x]_{\leq 2}, \mathbb{R}[x]_{\leq 2})$ defined by

$$(Tf)(x) = \int_{-1}^{1} (x-y)^2 f(y) \, dy - 2f(0)x^2$$
 for all $f \in \mathbb{R}[x]_{\leq 2}$.

Find all eigenvalues and eigenvectors for T.

3. Suppose *n* is a positive integer and $T \in End(\mathbb{K}^n)$ is defined by

 $T(x_1,...,x_n) = (x_1 + \dots + x_n,...,x_1 + \dots + x_n);$

in other words, T is the operator whose matrix (with respect to the standard basis) consists of all 1's. Find all eigenvalues and eigenvectors of T.