Problem Set #6 Due: Friday, February 16, 2007

- 1. Suppose $T \in End(V)$ has $\dim V$ distinct eigenvalues and that $S \in End(V)$ has the same eigenvectors as T (not necessarily with the same eigenvalues). Prove that ST = TS.
- **2.** Let V be a complex inner product space. For $u, v \in V$ prove that $\langle u, v \rangle = 0$ if and only if $||u|| \le ||u + cv||$ for all $c \in \mathbb{C}$.

Hint. Use the orthogonal decomposition and Pythagorean Theorem.

- **3.** Prove the *polar identities*.
 - (a) On a real inner product space V, show that for all $u, v \in V$, we have

$$\langle u, v \rangle = \frac{1}{4} (\|u + v\|^2 - \|u - v\|^2).$$

(b) On a complex inner product space V, show that for all $u, v \in V$, we have

$$\langle u, v \rangle = \frac{1}{4} \left[\|u + v\|^2 - \|u - v\|^2 + i \left(\|u + iv\|^2 - \|u - iv\|^2 \right) \right].$$