Problem Set \#6
 Due: Friday, February 16, 2007

1. Suppose $T \in \operatorname{End}(V)$ has $\operatorname{dim} V$ distinct eigenvalues and that $S \in \operatorname{End}(V)$ has the same eigenvectors as T (not necessarily with the same eigenvalues). Prove that $S T=T S$.
2. Let V be a complex inner product space. For $u, v \in V$ prove that $\langle u, v\rangle=0$ if and only if $\|u\| \leq\|u+c v\|$ for all $c \in \mathbb{C}$.

Hint. Use the orthogonal decomposition and Pythagorean Theorem.
3. Prove the polar identities.
(a) On a real inner product space V, show that for all $u, v \in V$, we have

$$
\langle u, v\rangle=\frac{1}{4}\left(\|u+v\|^{2}-\|u-v\|^{2}\right) .
$$

(b) On a complex inner product space V, show that for all $u, v \in V$, we have

$$
\langle u, v\rangle=\frac{1}{4}\left[\|u+v\|^{2}-\|u-v\|^{2}+i\left(\|u+i v\|^{2}-\|u-i v\|^{2}\right)\right] .
$$

