Problem Set \#7
 Due: Friday, March 2, 2007

1. Let $n=3$. Define an inner product on $\mathbb{R}[x]_{\leq n}$ by

$$
\langle f, g\rangle:=\int_{-1}^{1} \frac{f(x) g(x)}{\sqrt{1-x^{2}}} d x .
$$

(a) Apply the Gram-Schmidt procedure to the basis $\left(1, x, \ldots, x^{n}\right)$ to produce an orthonormal basis $\left(e_{0}(x), \ldots, e_{n}(x)\right)$ of $\mathbb{R}[t] \leq n$.
(b) For $0 \leq j \leq n$ consider the operator $D_{j} \in \operatorname{End}\left(\mathbb{R}[t]_{\leq n}\right)$ defined by

$$
D_{j}(f)=\left(1-x^{2}\right) f^{\prime \prime}(x)-x f^{\prime}(x)+j^{2} f(x) .
$$

Show that $\operatorname{Span}\left(e_{j}(x)\right)=\operatorname{Ker}\left(D_{j}\right)$.
Hint. For $1 \leq j \leq 6$, use a computer algebra system to compute the integrals

$$
I_{j}:=\int_{-1}^{1} \frac{x^{j}}{\sqrt{1-x^{2}}} d x .
$$

2. Let $T \in \operatorname{End}(V)$ satisfy $T^{2}=T$.
(a) Prove that $V=\operatorname{Ker}(T) \oplus \operatorname{Im}(T)$.
(b) Suppose that $\|T v\| \leq\|v\|$ for all $v \in V$. Prove that T is an orthogonal projection.

Hint. Use Problem \#6.2 and part (a) to establish part (b).
3. Give \mathbb{R}^{4} the inner product

$$
\left\langle\left(x_{1}, x_{2}, x_{3}, x_{4}\right),\left(y_{1}, y_{2}, y_{3}, y_{4}\right)\right\rangle=2 x_{1} y_{1}+2 x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4} .
$$

Let $U=\operatorname{Span}((1,0,1,1),(3,2,-1,-1))$ and let P_{U} be the orthogonal projection onto U. Find a matrix A satisfying

$$
P_{U}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=A\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{4}
\end{array}\right] \quad \text { for all }\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4} .
$$

