Problem Set #9 Due: Friday, March 16, 2007

- **1.** Suppose $S \in End(V)$ satisfies $S^2 = S$. Prove that S is an orthogonal projection if and only if S is self-adjoint.
- **2.** Suppose that $T \in \text{End}(V)$ is self-adjoint, $\lambda \in \mathbb{K}$ and $\varepsilon > 0$. Prove that if there exists $v \in V$ such that ||v|| = 1 and $||Tv \lambda v|| < \varepsilon$, then T has an eigenvalue λ' such that $|\lambda \lambda'| < \varepsilon$.
- **3.** Define an inner product on the \mathbb{R} -vector space $\mathbb{R}[x]_{\leq 2}$ by $\langle f, g \rangle = \int_{-1}^{1} f(t)g(t) dt$. Consider $J \in \operatorname{End}(\mathbb{R}[x]_{\leq 2})$ defined by

$$(Jf)(x) = \frac{1}{8} \int_{-1}^{1} \left(7 + 6(x+t) - 6xt - 15(x^2 + t^2) + 45x^2t^2\right) f(t) dt.$$

- (a) Show *J* is self-adjoint.
- (b) Find an orthonormal eigenbasis for J.
- (c) Find J^2 , J^{-1} and $\cos(\pi J)$.

Hint. For part (c), use $\cos(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}$.