Problem Set \#9
 Due: Friday, March 16, 2007

1. Suppose $S \in \operatorname{End}(V)$ satisfies $S^{2}=S$. Prove that S is an orthogonal projection if and only if S is self-adjoint.
2. Suppose that $T \in \operatorname{End}(V)$ is self-adjoint, $\lambda \in \mathbb{K}$ and $\varepsilon>0$. Prove that if there exists $v \in V$ such that $\|v\|=1$ and $\|T v-\lambda v\|<\varepsilon$, then T has an eigenvalue λ^{\prime} such that $\left|\lambda-\lambda^{\prime}\right|<\varepsilon$.
3. Define an inner product on the \mathbb{R}-vector space $\mathbb{R}[x]_{\leq 2}$ by $\langle f, g\rangle=\int_{-1}^{1} f(t) g(t) d t$. Consider $J \in \operatorname{End}\left(\mathbb{R}[x]_{\leq 2}\right)$ defined by

$$
(J f)(x)=\frac{1}{8} \int_{-1}^{1}\left(7+6(x+t)-6 x t-15\left(x^{2}+t^{2}\right)+45 x^{2} t^{2}\right) f(t) d t
$$

(a) Show J is self-adjoint.
(b) Find an orthonormal eigenbasis for J.
(c) Find J^{2}, J^{-1} and $\cos (\pi J)$.

Hint. For part (c), use $\cos (x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} x^{2 k}$.

