Problem Set \#10
 Due: Friday, March 23, 2007

1. (a) Establish that any nonnegative linear combination of positive operators is positive.
(b) Suppose $T \in \operatorname{End}(V)$ is positive. Prove that T^{k} is positive for all positive integers k.
2. Let V be the \mathbb{R}-vector space of smooth functions f on the interval $[0, a]$ satisfying the boundary conditions $f(1)=f(a)=0$. Define an inner product on V by $\langle f, g\rangle=\int_{1}^{a} f(x) g(x) e^{x} d x$. Consider the differential operator $D \in \operatorname{End}(V)$ given by $(D f)(x)=-e^{-x} \frac{d}{d x}\left(x f^{\prime}(x)\right)$. Show that D is a positive operator.
3. (a) If $S \in \operatorname{End}\left(\mathbb{R}^{3}\right)$ is an isometry, then prove that there exists a nonzero vector $v \in \mathbb{R}^{3}$ such that $S^{2} v=v$.
(b) Define $T \in \operatorname{End}\left(\mathbb{C}^{3}\right)$ by $T\left(z_{1}, z_{2}, z_{3}\right)=\left(z_{3}, 2 z_{1}, 3 z_{2}\right)$. Find an isometry S such that $T=S \sqrt{T^{*} T}$.
