Problem Set #10 Due: Friday, March 23, 2007

- 1. (a) Establish that any nonnegative linear combination of positive operators is positive.
 - (b) Suppose $T \in End(V)$ is positive. Prove that T^k is positive for all positive integers k.
- **2.** Let V be the \mathbb{R} -vector space of smooth functions f on the interval [0, a] satisfying the boundary conditions f(1) = f(a) = 0. Define an inner product on V by $\langle f, g \rangle = \int_1^a f(x)g(x)e^x dx$. Consider the differential operator $D \in \text{End}(V)$ given by $(Df)(x) = -e^{-x}\frac{d}{dx}(xf'(x))$. Show that D is a positive operator.
- 3. (a) If $S \in End(\mathbb{R}^3)$ is an isometry, then prove that there exists a nonzero vector $v \in \mathbb{R}^3$ such that $S^2v = v$.
 - (b) Define $T \in \text{End}(\mathbb{C}^3)$ by $T(z_1, z_2, z_3) = (z_3, 2z_1, 3z_2)$. Find an isometry S such that $T = S\sqrt{T^*T}$.