Problems #2 MATH 387 : 2015

Due: Thursday, 15 January 2015

1. Prove that the diagonals of a parallelogram bisect each other and that, in addition, the diagonals of a rhombus are perpendicular to each other.

2. Two triangles are **congruent** if their corresponding sides are equal in length and their corresponding angles are equal in size. Prove the following proposition (which does not appear explicitly in Euclid's *Elements*).

If two right triangles have two sides equal, not containing the right angle, then they are congruent.

3. Explain what is wrong with the following argument which purports to prove that every triangle is isosceles.

Let *ABC* be any triangle. Let *D* be the midpoint of *BC*. The perpendicular to *BC* at *D* meet the angle bisector at *A* at the point *E*. Drop perpendiculars *EF* and *EG* to the sides of the triangle. Draw *BE* and *CE*. The triangles *AEF* and *AEG* have the side common and two angles equal, so they are congruent (Eucl.I.26). Hence, we have AF = AG and EF = EG. The triangles *BDE* and *CDE* have *DE* common, two other sides equal, and the included right angles equal. Thus, they are congruent (Eucl.I.4) and BE = CE. It follows that the triangles *BEF* and *CEG* are right triangles with two sides equal, so they are congruent (by Problem 2.2) and BF = CG. Therefore, we see that AB = AF + FB is equal to AC = AG + GC, so the triangle *ABC* is isosceles.

