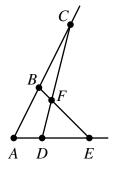
Problem Set #6 MATH 387 : 2015

Due: Thursday, 12 February 2015

- **1.** A *projective plane* is a set of points and subsets called lines that satisfy the axioms:
 - (P0) Any two distinct points lie on a unique line.
 - (P1) Any two lines meet in at least one point.
 - (P2) Every line contains at least three points.
 - (P3) There exist three non-collinear points.
 - (a) Show that every projective plane has at least seven points.
 - (b) Show that there exists a model of a projective plane having exactly seven points.
 - (c) Prove that the four axioms are independent.
- 2. Consider two distinct lines AC and AE that meet at the point A. Let B be a point between A and C and let D be a point between A and E. Using only the axioms of incidence, the axioms of betweenness, and the separation propositions, show that the line segment \overline{BE} must meet the line segment \overline{CD} at a point F.



3. Consider the real Cartesian plane \mathbb{R}^2 with the standard notions of lines and betweenness. Define a different notion of congruence of line segments using the distance function given by the sum of the absolute values:

$$d_0(A,B) := |a_1 - b_1| + |a_2 - b_2|,$$

where $A = (a_1, a_2)$ and $B = (b_1, b_2)$. Specifically, we declare that $\overline{AB} \cong \overline{CD}$ if and only if $d_0(A, B) = d_0(C, D)$.

- (a) Show that the axioms of congruence for line segments, namely Hilb.C1–C3, hold.
 - (Hilb.C1) Given a line segment \overline{AB} and a ray *r* originating from the point *C*, there exists a unique point *D* on the ray *r* such that $\overline{AB} \cong \overline{CD}$.
 - (Hilb.C2) If $\overline{AB} \cong \overline{CD}$ and $\overline{AB} \cong \overline{EF}$, then we have $\overline{CD} \cong \overline{EF}$. Every line segment is congruent to itself.
 - (Hilb.C3) Suppose that A, B, C are three points on a line such that B is between A and C, and suppose that D, E, F are three points on a line such that E is between D and F. If $\overline{AB} \cong \overline{DE}$ and $\overline{BC} \cong \overline{EF}$, then we have $\overline{AC} \cong \overline{DF}$.
- (b) What does the circle centred at (0,0) and radius 1 look like in this model?

