Problem Set \#6
 MATH 387 : 2015

Due: Thursday, 12 February 2015

1. A projective plane is a set of points and subsets called lines that satisfy the axioms:
(P0) Any two distinct points lie on a unique line.
(P1) Any two lines meet in at least one point.
(P2) Every line contains at least three points.
(P3) There exist three non-collinear points.
(a) Show that every projective plane has at least seven points.
(b) Show that there exists a model of a projective plane having exactly seven points.
(c) Prove that the four axioms are independent.
2. Consider two distinct lines $A C$ and $A E$ that meet at the point A. Let B be a point between A and C and let D be a point between A and E. Using only the axioms of incidence, the axioms of betweenness, and the separation propositions, show that the line segment $\overline{B E}$ must meet the line segment $\overline{C D}$ at a point F.

3. Consider the real Cartesian plane \mathbb{R}^{2} with the standard notions of lines and betweenness. Define a different notion of congruence of line segments using the distance function given by the sum of the absolute values:

$$
d_{0}(A, B):=\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right|
$$

where $A=\left(a_{1}, a_{2}\right)$ and $B=\left(b_{1}, b_{2}\right)$. Specifically, we declare that $\overline{A B} \cong \overline{C D}$ if and only if $d_{0}(A, B)=d_{0}(C, D)$.
(a) Show that the axioms of congruence for line segments, namely Hilb.C1-C3, hold.
(Hilb.C1) Given a line segment $\overline{A B}$ and a ray r originating from the point C, there exists a unique point D on the ray r such that $\overline{A B} \cong \overline{C D}$.
(Hilb.C2) If $\overline{A B} \cong \overline{C D}$ and $\overline{A B} \cong \overline{E F}$, then we have $\overline{C D} \cong \overline{E F}$. Every line segment is congruent to itself.
(Hilb.C3) Suppose that A, B, C are three points on a line such that B is between A and C, and suppose that D, E, F are three points on a line such that E is between D and F. If $\overline{A B} \cong \overline{D E}$ and $\overline{B C} \cong \overline{E F}$, then we have $\overline{A C} \cong \overline{D F}$.
(b) What does the circle centred at $(0,0)$ and radius 1 look like in this model?

