## Problem Set \#7 <br> MATH 387 : 2015

Due: Thursday, 26 February 2015

1. An affine plane is a set of points and subsets called lines that satisfy the axioms:
(A0) Any two distinct points lie on a unique line.
(A1) For any line $\ell$ and any point $A$, there exists a unique line $m$ containing the point $A$ and parallel to $\ell$.
(A2) Every line contains at least two points.
(A3) There exist three non-collinear points.
(a) Show that any two lines in an affine plane have the same number of points (i.e. there exists a bijective correspondence between the points on two lines).
(b) If an affine plane has a line with exactly $n$ points, then the total number of points in the plane is $n^{2}$.
(c) Show that there exist affine planes with 4 and 9 points.
2. In a Hilbert plane, suppose that we are given a quadrilateral $A B C D$ with $\overline{A B} \cong \overline{C D}$ and $\overline{A C} \cong \overline{B D}$. Prove that the line $C D$ is parallel to the line $A B$ (without using the Parallel Postulate or Hilb.P).


Hint. Join the midpoints of $A B$ and $C D$, and use Eucl.I. 27.
3. The circle-circle intersection property asserts:
(Hilb.E) Let $\Gamma$ and $\Gamma^{\prime}$ be two circles. If $\Gamma^{\prime}$ contains at least one point inside $\Gamma$ and $\Gamma^{\prime}$ contains at least one point outside $\Gamma$, then $\Gamma$ and $\Gamma^{\prime}$ meet.
Use Hilb.E to justify Eucl.I.22. Specifically, given three line segments in a Hilbert plane satisfying Hilb.E such that sum of any two is greater than the third, construct a triangle with sides congruent to the three given segments.

