Problem Set #8 MATH 387 : 2015

Due: Thursday, 5 March 2015

- **1.** A field k together with an binary relation < is an *ordered field* provided the following hold: (O0) If $a \in k$, then one and only one of the following holds: 0 < a, a = 0, or a < 0.
 - (O1) If a < b and b < c, then a < c.
 - (O2) If a < b, then a + c < b + c for all $c \in k$.
 - (O3) If 0 < a and 0 < b, then $0 < a \cdot b$.
 - A *positive cone* in a field \Bbbk is a subset $\Bbbk_+ \subset \Bbbk$ such that the following hold:
 - (P0) If $0 \neq a \in k$, then either $a \in k_+$ or $-a \in k_+$.
 - (P1) For $a, b \in \mathbb{k}_+$, both $a + b \in \mathbb{k}_+$ and $a \cdot b \in \mathbb{k}_+$.
 - (P2) If $0 \neq a \in \mathbb{k}$, then $a^2 \in \mathbb{k}_+$.
 - (P3) The elements 0 and -1 is not in k_+ .

Given a field k, show that there is a bijection between ordered fields structures on k and positive cones in k.

- **2.** Consider two triangles *ABC* and *DEF*. If $\angle BAC \cong \angle EDF$, and the sides \overline{AB} , \overline{AC} are proportional to the sides \overline{DE} , \overline{DF} , then prove that the two triangles are similar.
- **3.** Let *ABC* be any triangle. If \overline{AD} is the angle bisector of $\angle BAC$ where *D* is between *B* and *C*, then prove that \overline{AB} and \overline{AC} are proportional to \overline{BD} and \overline{CD} .

