Problem Set \#8
 MATH 387: 2015

Due: Thursday, 5 March 2015

1. A field \mathbb{k} together with an binary relation $<$ is an ordered field provided the following hold: (O0) If $a \in \mathbb{k}$, then one and only one of the following holds: $0<a, a=0$, or $a<0$.
(O1) If $a<b$ and $b<c$, then $a<c$.
(O2) If $a<b$, then $a+c<b+c$ for all $c \in \mathbb{k}$.
(O3) If $0<a$ and $0<b$, then $0<a \cdot b$.
A positive cone in a field \mathbb{k} is a subset $\mathbb{k}_{+} \subset \mathbb{k}$ such that the following hold:
(P0) If $0 \neq a \in \mathbb{k}$, then either $a \in \mathbb{k}_{+}$or $-a \in \mathbb{k}_{+}$.
(P1) For $a, b \in \mathbb{k}_{+}$, both $a+b \in \mathbb{k}_{+}$and $a \cdot b \in \mathbb{k}_{+}$.
(P2) If $0 \neq a \in \mathbb{k}$, then $a^{2} \in \mathbb{k}_{+}$.
(P3) The elements 0 and -1 is not in \mathbb{k}_{+}.
Given a field \mathbb{k}, show that there is a bijection between ordered fields structures on \mathbb{k} and positive cones in \mathbb{k}.
2. Consider two triangles $A B C$ and $D E F$. If $\angle B A C \cong \angle E D F$, and the sides $\overline{A B}, \overline{A C}$ are proportional to the sides $\overline{D E}, \overline{D F}$, then prove that the two triangles are similar.
3. Let $A B C$ be any triangle. If $\overline{A D}$ is the angle bisector of $\angle B A C$ where D is between B and C, then prove that $\overline{A B}$ and $\overline{A C}$ are proportional to $\overline{B D}$ and $\overline{C D}$.

