## Problem Set \#9 <br> MATH 387: 2015

Due: Thursday, 12 March 2015

1. Consider two perpendicular radii $\overline{O A}$ and $\overline{O B}$ in a circle $\Gamma$ centred at the point $O$. Let $C$ be the midpoint of $\overline{O B}$, and let $\overline{C D}$ be the angle bisector of $\angle A C O$ where $D$ is between $O$ and $A$. If $\overline{D E}$ is perpendicular to the line $O A$ and $E$ lies on the circle $\Gamma$, then prove that $\overline{A E}$ is the side of a regular pentagon inscribed in $\Gamma$.


Hint. Use Problem 8.3, to find the length of $\overline{A E}$.
2. In Cartesian plane over the ordered field $\mathfrak{k}$, consider an angle $\alpha$ formed by two rays lying on lines of slope $m$ and $m^{\prime}$. The tangent of $\alpha$ is defined to be

$$
\tan (\alpha)= \pm\left|\frac{m^{\prime}-m}{1+m \cdot m^{\prime}}\right|
$$

where we take the positive sign if the angle is acute and the negative sign if the angle is obtuse. Using this definition, verify that for any two acute angles $\alpha$ and $\beta$, we have

$$
\tan (\alpha+\beta)=\frac{\tan (\alpha)+\tan (\beta)}{1-\tan (\alpha) \cdot \tan (\beta)}
$$

3. In the Cartesian plane over an ordered field $\mathbb{k}$, consider a right triangle $A B C$ where $\angle A B C$ is a right angle. Let $D$ and $E$ be the midpoints of the segments $\overline{A B}$ and $\overline{A C}$ respectively. Show that there exists a line segment $\overline{F G}$ such that $F$ is between $B$ and $D, G$ is between $C$ and $E$, $\overline{F G}$ is parallel to $\overline{B C}$, and $\overline{E F}$ is parallel to $\overline{B G}$ if and only if $\sqrt{2} \in \mathbb{k}$.

