Problem Set #9 MATH 387 : 2015

Due: Thursday, 12 March 2015

Consider two perpendicular radii OA and OB in a circle Γ centred at the point O. Let C be the midpoint of OB, and let CD be the angle bisector of ∠ACO where D is between O and A. If DE is perpendicular to the line OA and E lies on the circle Γ, then prove that AE is the side of a regular pentagon inscribed in Γ.

Hint. Use Problem 8.3, to find the length of \overline{AE} .

2. In Cartesian plane over the ordered field \Bbbk , consider an angle α formed by two rays lying on lines of slope *m* and *m'*. The *tangent* of α is defined to be

$$\tan(\alpha) = \pm \left| \frac{m' - m}{1 + m \cdot m'} \right|,\,$$

where we take the positive sign if the angle is acute and the negative sign if the angle is obtuse. Using this definition, verify that for any two acute angles α and β , we have

$$\tan(\alpha+\beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha) \cdot \tan(\beta)}.$$

3. In the Cartesian plane over an ordered field \Bbbk , consider a right triangle *ABC* where $\angle ABC$ is a right angle. Let *D* and *E* be the midpoints of the segments \overline{AB} and \overline{AC} respectively. Show that there exists a line segment \overline{FG} such that *F* is between *B* and *D*, *G* is between *C* and *E*, \overline{FG} is parallel to \overline{BC} , and \overline{EF} is parallel to \overline{BG} if and only if $\sqrt{2} \in \Bbbk$.

