Problem Set #9
MATH 387 : 2015

Due: Thursday, 12 March 2015

1. Consider two perpendicular radii \overline{OA} and \overline{OB} in a circle Γ centred at the point O. Let C be the midpoint of \overline{OB}, and let \overline{CD} be the angle bisector of $\angle ACO$ where D is between O and A. If \overline{DE} is perpendicular to the line \overline{OA} and E lies on the circle Γ, then prove that \overline{AE} is the side of a regular pentagon inscribed in Γ.

Hint. Use Problem 8.3, to find the length of \overline{AE}.

2. In Cartesian plane over the ordered field \mathbb{k}, consider an angle α formed by two rays lying on lines of slope m and m'. The tangent of α is defined to be

$$\tan(\alpha) = \pm \frac{m' - m}{1 + m \cdot m'},$$

where we take the positive sign if the angle is acute and the negative sign if the angle is obtuse. Using this definition, verify that for any two acute angles α and β, we have

$$\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha) \cdot \tan(\beta)}.$$

3. In the Cartesian plane over an ordered field \mathbb{k}, consider a right triangle ABC where $\angle ABC$ is a right angle. Let D and E be the midpoints of the segments AB and AC respectively. Show that there exists a line segment \overline{FG} such that F is between B and D, G is between C and E, \overline{FG} is parallel to BC, and \overline{EF} is parallel to BG if and only if $\sqrt{2} \in \mathbb{k}$.