Problem Set \#10
 MATH 387: 2015

Due: Thursday, 19 March 2015

1. A Lambert quadrilateral is a quadrilateral $A B C D$ with right angles at $\angle D A B, \angle A B C$, and $\angle B C D$. Show that the fourth angle $\angle C D A$ is acute, right, or obtuse if and only if the geometry is semi-hyperbolic, semi-Euclidean, or semi-elliptic respectively.

2. In a semi-hyperbolic or semi-elliptic plane, prove the Angle-Angle-Angle Congruence Theorem for triangles:

If two triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ satisfy $\angle A B C \cong \angle A^{\prime} B^{\prime} C^{\prime}, \angle B C A \cong \angle B^{\prime} C^{\prime} A^{\prime}$, and $\angle C A B \cong \angle C^{\prime} A^{\prime} B^{\prime}$, then the two triangles are congruent.
3. The field of real rational functions $\frac{f(t)}{g(t)}$, where $f(t)$ and $0 \neq g(t)$ are univariate polynomials with real coefficients, can be made into an ordered field by defining $\frac{f(t)}{g(t)}>0$ whenever $\frac{a_{n}}{b_{m}}>0$ and $f(t)=a_{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{0}$ and $g(t)=b_{m} t^{m}+a_{m-1} t^{m-1}+\cdots+b_{0}$. Arrange the following elements in increasing order:
$0, \quad 1, \quad 5, \quad t, \quad \frac{1}{t}, \quad t+1, \quad \frac{1}{t+1}, \quad t-1, \quad \frac{t^{2}}{2}, \quad t^{2}-t, \quad t^{2}-1, \quad t+\frac{1}{t}, \quad \frac{t-1}{t+1}$.

