9.2 The Gosper Algorithm

Recall the following algorithm.
Algorithm 9.2.1 (Gosper).
input: a hypergeometric term t_{n}
output: a hypergeometric term s_{n} such that $s_{n+1}-s_{n}=t_{n}$
if one exists, otherwise null.
Write $\frac{t_{n+1}}{t_{n}}=\frac{f(n)}{g(n)} \frac{h(n+1)}{h(n)}$ where $f, g, h \in \mathbb{C}[x]$ and $\operatorname{gcd}(f(n), g(n+j))=1$ for all nonnegative integers j.
If there exists a nonzero polynomial $p(n)$ such that $f(n) p(n+1)-g(n-1) p(n)=h(n)$
then return $\frac{\mathrm{g}(n-1) p(n)}{h(n)} t_{n}$
else return null.
Problem 9.2.2. Can $\sum_{k=0}^{n-1} k!$ be expressed in closed form?
Solution. Following the Gosper algorithm, we have

$$
\frac{t_{n+1}}{t_{n}}=\frac{(n+1)!}{n!}=n+1
$$

so $f(n)=n+1, g(n)=1$, and $h(n)=1$. The functional equation is $(n+1) p(n+1)-p(n)=1$ which has no solution. Therefore, this indefinite sum is not hypergeometric.

Correctness of the Gosper algorithm. Given Lemmas 9.1.5-9.1.7, it remains to show that a rational function $p(n)$ that satisfies

$$
f(n) p(n+1)-g(n-1) p(n)=h(n)
$$

is a polynomial.
Let $p(n)=a(n) / b(n)$ where $\operatorname{gcd}(a(n), b(n))=1$. To prove that $b(n)=1$, we show that $\operatorname{gcd}(b(n), b(n+k))=1$ for all nonnegative integers k. The case $k=0$ establishes that $b(n)=1$.

Suppose otherwise and let j be maximal nonnegative integer such that $q(n):=\operatorname{gcd}(b(n), b(n+j)) \neq 1$. If $b(n) \neq 1$, then such an index j exists. Indeed, if ξ is a root of $q(n)$, then ξ and $\zeta:=\xi+j$ are roots of $b(n)$. When $j>\max \{\zeta-\xi \mid \xi$ and ζ roots of $b(n)\}$, the defining equation of $q(n)$ cannot be satisfied. Hence, the definition of j implies that $\operatorname{gcd}(b(n), b(n+j+1))=1$.

Since $p(n)=a(n) / b(n)$, the functional equation becomes

$$
f(n) a(n+1) b(n)-g(n-1) a(n) b(n+1)=h(n) b(n) b(n+1) .
$$

We derive the desired contradiction by showing that
(a) $q(n+1)$ divides $f(n)$, and
(b) $q(n+1)$ divides $g(n+j)$.

As a consequence, the maximality of the degree $h(n)$ implies that $\operatorname{gcd}(f(n), g(n+j))=1$, for all nonnegative integers j, and we deduce that $q(n+1)=1$.

Proof of a. Set $\varphi(n):=\operatorname{gcd}(q(n+1), b(n))$. It follows that $\varphi(n)$ divides $q(n+1)$ which divides $b(n+j+1)$. We also see that $\varphi(n)$ divides $b(n)$. Because $\operatorname{gcd}(b(n), b(n+j+1))=1$, we deduce that $\varphi(n)=1$. Since $q(n+1)$ divides $b(n+1)$, and $q(n+1)$ is relatively prime to $a(n+1)$ and $b(n)$, the functional equation implies that $q(n+1)$ divides $f(n)$.
Proof of b. Set $\psi(n):=\operatorname{gcd}(q(n-j), b(n+1))$. It follows that $\psi(n+j)$ divides $q(n)$ which divides $b(n)$. We also see that $\psi(n+j)$ divides $b(n+j+1)$. Again because

$$
\operatorname{gcd}(b(n), b(n+j+1))=1
$$

we deduce that $\psi(n)=1$. Since $q(n-j)$ divides $b(n)$ and $q(n-j)$ is relatively prime to both $a(n)$ and $b(n+1)$, the functional equations implies that $q(n-j)$ divides $g(n-1)$ or $q(n+1)$ divides $g(n+j)$.

Problem 9.2.3. For any nonnegative integer m, can the sums

$$
\sum_{k=0}^{n-1}(-1)^{k}\binom{m}{k} \quad \text { and } \quad \sum_{k=0}^{n-1}\binom{m}{k}
$$

be expressed in closed form?
Solution. Following the Gosper algorithm, we have

$$
\frac{t_{n+1}}{t_{n}}=\frac{(-1)^{n+1}\binom{m}{n+1}}{(-1)^{n}\binom{m}{n}}=(-1) \frac{m!}{(n+1)!(m-n-1)!} \frac{n!(m-n)!}{m!}=\frac{n-m}{n+1}
$$

so $f(n)=n-m, g(n)=n+1$, and $h(n)=1$. Hence, we have $\operatorname{gcd}(n-m, n+1+j)=1$ for all nonnegative integers j. The functional equation $(n-m) p(n+1)-(n) p(n)=1$ has the constant polynomial $p(n)=-1 / m$ as a solution. We conclude that $s_{n}:=-\frac{n}{m}(-1)^{n}\binom{m}{n}=(-1)^{n+1}\binom{m-1}{n-1}$ satisfies

$$
\begin{aligned}
s_{n+1}-s_{n} & =(-1)^{n+2}\binom{m-1}{n}-(-1)^{n+1}\binom{m-1}{n-1} \\
& =(-1)^{n}\left(\binom{m-1}{n}+\binom{m-1}{n-1}\right)=(-1)^{n}\binom{m}{n} .
\end{aligned}
$$

Thus, we have $\sum_{k=0}^{n-1}(-1)^{k}\binom{m}{k}=(-1)^{n+1}\binom{m-1}{n-1}$ for all nonnegative integers n.

For the second sum, the Gosper algorithm gives

$$
\frac{t_{n+1}}{t_{n}}=\frac{\binom{m}{n+1}}{\binom{m}{n}}=\frac{m!}{(n+1)!(m-n-1)!} \frac{n!(m-n)!}{m!}=\frac{m-n}{n+1}
$$

so $f(n)=m-n, g(n)=n+1$, and $h(n)=1$. Observe that $\operatorname{gcd}(m-n, n+1+j)=1$ for all nonnegative integers j. However, the functional equation $(m-n) p(n+1)-(n) p(n)=1$ has no solution because the highest coefficients do not cancel. Therefore, this indefinite sum is not hypergeometric.

9.3 The Zeilberger Algorithm

Although the infinite sum $\sum_{k \in \mathbb{Z}}\binom{m}{k}=2^{m}$ has a simple form, the indefinite sum $\sum_{k=0}^{n-1}\binom{m}{k}$ is not hypergeometric. Extending our analogy, the function $\exp \left(-x^{2}\right)$ is not the derivative of an elementary function, so the infinite integral $\int \exp \left(-x^{2}\right) d x$ cannot be expressed as an elementary function. Nevertheless, the definite improper integral is $\int_{-\infty}^{\infty} \exp \left(-x^{2}\right) d x=\sqrt{\pi}$.

Consider a sum $\sum_{k} F(n, k)$ where $F(n, k)$ is a hypergeometric term in both arguments: $F(n+1, k) / F(n, k)$ and $F(n, k+1) / F(n, k)$ are rational functions of n and k. Can we find a recurrence for the sum? Even though we cannot expect, in general, to find a term $G(n, k)$ such that $F(n, k)=G(n, k+1)-G(n, k)$, we often get lucky and find a $G(n, k)$ for which

$$
F(n+1, k)-F(n, k)=G(n, k+1)-G(n, k) .
$$

When this happens, we can prove that the definite sum is a constant. By extending the Gosper algorithm, Zeilberger provides a method for determining if such a recurrence of a given order exists. Rather than discuss all of the details, we simply illustrate the basic idea in a two examples.

Problem 9.3.1. For any nonnegative integer n, does the sum

$$
s_{n}:=\sum_{k \in \mathbb{Z}}(-1)^{k}\binom{n}{k}\binom{n+k}{k}
$$

satisfy a first-order recurrence?
Solution. For any two polynomials $\alpha, \beta \in \mathbb{C}[n]$, consider the firstorder recurrence operator:

$$
\begin{aligned}
H(n, k) & =\alpha(n) F(n, k)+\beta(n) F(n+1, k) \\
& =\alpha(n)(-1)^{k}\binom{n}{k}\binom{n+k}{k}+\beta(n)(-1)^{k}\binom{n+1}{k}\binom{n+1+k}{k} \\
& =\frac{(n+k)!(-1)^{k}}{(k!)^{2}(n+1-k)!}(k(\alpha(n)-\beta(n))+(n+1)(\alpha(n)+\beta(n))) .
\end{aligned}
$$

Set $h(k):=k(\alpha(n)-\beta(n))+(n+1)(\alpha(n)+\beta(n)) \in(\mathbb{Q}[n])[k]$.
Following the Gosper algorithm, we have

$$
\begin{aligned}
\frac{H(n, k+1)}{H(n, k)} & =\frac{(n+k+1)!(-1)^{k+1}}{((k+1)!)^{2}(n-k)!} \frac{(k!)^{2}(n+1-k)!}{(n+k)!(-1)^{k}} \frac{h(k+1)}{h(k)} \\
& =\frac{(k+(n+1))((k-(n+1))}{(k+1)^{2}} \frac{h(k+1)}{h(k)},
\end{aligned}
$$

so $f(k)=(k+(n+1))\left((k-(n+1)), g(k)=(k+1)^{2}\right.$, and $\operatorname{gcd}(f(k), g(k+j))=1$ for all nonnegative integers j. The functional equation becomes

$$
(k+(n+1))\left((k-(n+1)) p(k+1)-k^{2} p(k)=k(\alpha(n)-\beta(n))+(n+1)(\alpha(n)+\beta(n))\right.
$$

which has the solution $\alpha(n)=\beta(n)=n+1$ and $p(k)=-2$. We conclude that

$$
G(n, k)=\frac{g(k-1) p(k)}{h(k)} H(n, k)=\frac{(-1)^{k+1} 2 k^{2}(n+k)!}{(k!)^{2}(n+1-k)!}
$$

satisfies

$$
\begin{aligned}
G(n, k+1)-G(n, k) & =\frac{(-1)^{k+2} 2(k+1)^{2}(n+k+1)!}{((k+1)!)^{2}(n-k)!}-\frac{(-1)^{k+1} 2 k^{2}(n+k)!}{(k!)^{2}(n+1-k)!} \\
& =\frac{(-1)^{k+1} 2(n+k)!}{(k!)^{2}(n-k)!}\left[\frac{(k+1)^{2}(n+k+1)}{(k+1)^{2}}+\frac{k^{2}}{n+1-k}\right] \\
& =-2(n+1)^{2} H(n, k) .
\end{aligned}
$$

Hence, we have

$$
\sum_{k \in \mathbb{Z}} H(n, k)=-2(n+1)^{2} \sum_{k \in \mathbb{Z}} G(n, k+1)-G(n, k)=0,
$$

so $(n+1) s_{n}+(n+1) s_{n+1}=0, s_{n+1}=-s_{n}$, and $s_{n}=(-1)^{n}$.
Problem 9.3.2. For any nonnegative integer n, does the sum

$$
s_{n}:=\sum_{k \in \mathbb{Z}}\binom{n}{k}\binom{n+k}{k}
$$

satisfy a second-order recurrence?
Solution. For any polynomials $\alpha, \beta, \gamma \in \mathbb{C}[n]$, consider the secondorder recurrence operator:

$$
\begin{aligned}
H(n, k) & =\alpha(n) F(n, k)+\beta(n) F(n+1, k)+\gamma(n) F(n+2, k) \\
& =\alpha(n)\binom{n}{k}\binom{n+k}{k}+\beta(n)\binom{n+1}{k}\binom{n+1+k}{k}+\gamma(n)\binom{n+2}{k}\binom{n+2+k}{k} \\
& =\frac{(n+k)!}{(k!)^{2}(n-k+2)!} h(k) .
\end{aligned}
$$

For brevity, set
$h(k):=(n-k+2)(n-k+1) \alpha(n)+(n+k+1)(n-k+2) \beta(n)+(n+k+2)(n+k+1) \gamma(n)$.
Following the Gosper algorithm, we have

$$
\begin{aligned}
\frac{H(n, k+1)}{H(n, k)} & =\frac{(n+k+1)!}{((k+1)!)^{2}(n-k+1)!} \frac{(k!)^{2}(n-k+2)!}{(n+k)!} \frac{h(k+1)}{h(k)} \\
& =\frac{(n+k+1)(n-k+2)}{(k+1)^{2}} \frac{h(k+1)}{h(k)}
\end{aligned}
$$

so we obtain $f(k)=(n+k+1)(n-k+2), g(k)=(k+1)^{2}$, and $\operatorname{gcd}(f(k), g(k+j))=1$ for all nonnegative integers j. The functional equation is $(n+k+1)(n-k+2) p(k+1)-k^{2} p(k)=h(k)$.
It follows that

$$
\begin{array}{rlrl}
k^{0} & : & (n+1)(n+1) p & =(n+1)(n+2)(\alpha(n)+\beta(n)+\gamma(n)) \\
k^{1} & & p & =(-2 n-3) \alpha(n)+\beta(n)+(2 n+3) \gamma(n) \\
k^{2}: & -2 p & =\alpha(n)-\beta(n)+\gamma(n)
\end{array}
$$

which has $\alpha(n)=n+1, \beta(n)=-6 n-9, \gamma(n)=n+2$, and $p(n)=-4 n-6$ as a solution. We conclude that

$$
(n+1) s_{n}-(6 n+9) s_{n+1}+(n+2) s_{n+2}=0 .
$$

Remark 9.3.3. The numbers satisfying this last recurrence are called the central Delannoy numbers. Their ordinary generating function is $\left(1-6 x+x^{2}\right)^{-1 / 2}$.

