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9.2 The Gosper Algorithm

Recall the following algorithm.

Algorithm 9.2.1 (Gosper).
input: a hypergeometric term 𝑡𝑛
output: a hypergeometric term 𝑠𝑛 such that 𝑠𝑛+1 − 𝑠𝑛 = 𝑡𝑛

if one exists, otherwise null.

Write 𝑡𝑛+1𝑡𝑛 = 𝑓(𝑛)𝑔(𝑛) ℎ(𝑛+1)ℎ(𝑛) where 𝑓, 𝑔, ℎ ∈ ℂ[𝑥] and gcd(𝑓(𝑛), 𝑔(𝑛 + 𝑗)) = 1 for all nonnegative integers 𝑗.
If there exists a nonzero polynomial 𝑝(𝑛) such that 𝑓(𝑛)𝑝(𝑛 + 1) − 𝑔(𝑛 − 1)𝑝(𝑛) = ℎ(𝑛)

then return 𝑔(𝑛−1)𝑝(𝑛)ℎ(𝑛) 𝑡𝑛
else return null.

Problem 9.2.2. Can
𝑛−1∑𝑘=0 𝑘! be expressed in closed form?

Solution. Following the Gosper algorithm, we have

𝑡𝑛+1𝑡𝑛 = (𝑛 + 1)!𝑛! = 𝑛 + 1
so 𝑓(𝑛) = 𝑛+1, 𝑔(𝑛) = 1, and ℎ(𝑛) = 1. The functional equation is(𝑛 + 1)𝑝(𝑛 + 1) − 𝑝(𝑛) = 1 which has no solution. Therefore, this
indefinite sum is not hypergeometric.

Correctness of the Gosper algorithm. Given Lemmas 9.1.5–9.1.7, it
remains to show that a rational function 𝑝(𝑛) that satisfies

𝑓(𝑛)𝑝(𝑛 + 1) − 𝑔(𝑛 − 1)𝑝(𝑛) = ℎ(𝑛)
is a polynomial.

Let 𝑝(𝑛) = 𝑎(𝑛) ⁄ 𝑏(𝑛) where gcd(𝑎(𝑛), 𝑏(𝑛)) = 1. To prove that𝑏(𝑛) = 1, we show that gcd(𝑏(𝑛), 𝑏(𝑛 + 𝑘)) = 1 for all nonnegative
integers 𝑘. The case 𝑘 = 0 establishes that 𝑏(𝑛) = 1.

Suppose otherwise and let 𝑗 be maximal nonnegative integer
such that 𝑞(𝑛)∶= gcd(𝑏(𝑛), 𝑏(𝑛 + 𝑗)) ≠ 1. If 𝑏(𝑛) ≠ 1, then such an
index 𝑗 exists. Indeed, if 𝜉 is a root of 𝑞(𝑛), then 𝜉 and 𝜁 ∶= 𝜉 + 𝑗
are roots of 𝑏(𝑛). When 𝑗 > max{𝜁 − 𝜉 ∣ 𝜉 and 𝜁 roots of 𝑏(𝑛)}, the
defining equation of 𝑞(𝑛) cannot be satisfied. Hence, the defini‑
tion of 𝑗 implies that gcd (𝑏(𝑛), 𝑏(𝑛 + 𝑗 + 1)) = 1.

Since 𝑝(𝑛) = 𝑎(𝑛) ⁄ 𝑏(𝑛), the functional equation becomes

𝑓(𝑛)𝑎(𝑛 + 1) 𝑏(𝑛) − 𝑔(𝑛 − 1)𝑎(𝑛) 𝑏(𝑛 + 1) = ℎ(𝑛) 𝑏(𝑛) 𝑏(𝑛 + 1) .
We derive the desired contradiction by showing that
(a) 𝑞(𝑛 + 1) divides 𝑓(𝑛), and
(b) 𝑞(𝑛 + 1) divides 𝑔(𝑛 + 𝑗).
As a consequence, the maximality of the degree ℎ(𝑛) implies that
gcd(𝑓(𝑛), 𝑔(𝑛 + 𝑗)) = 1, for all nonnegative integers 𝑗, and we
deduce that 𝑞(𝑛 + 1) = 1.
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Proof of a. Set 𝜑(𝑛) ∶= gcd(𝑞(𝑛 + 1), 𝑏(𝑛)). It follows that 𝜑(𝑛)
divides 𝑞(𝑛 + 1) which divides 𝑏(𝑛 + 𝑗 + 1). We also see that𝜑(𝑛) divides 𝑏(𝑛). Because gcd (𝑏(𝑛), 𝑏(𝑛 + 𝑗 + 1)) = 1, we
deduce that 𝜑(𝑛) = 1. Since 𝑞(𝑛 + 1) divides 𝑏(𝑛 + 1), and𝑞(𝑛 + 1) is relatively prime to 𝑎(𝑛 + 1) and 𝑏(𝑛), the functional
equation implies that 𝑞(𝑛 + 1) divides 𝑓(𝑛).

Proof of b. Set 𝜓(𝑛) ∶= gcd(𝑞(𝑛 − 𝑗), 𝑏(𝑛 + 1)). It follows that𝜓(𝑛 + 𝑗) divides 𝑞(𝑛) which divides 𝑏(𝑛). We also see that𝜓(𝑛 + 𝑗) divides 𝑏(𝑛 + 𝑗 + 1). Again because

gcd (𝑏(𝑛), 𝑏(𝑛 + 𝑗 + 1)) = 1 ,
we deduce that 𝜓(𝑛) = 1. Since 𝑞(𝑛−𝑗) divides 𝑏(𝑛) and 𝑞(𝑛−𝑗)
is relatively prime to both 𝑎(𝑛) and 𝑏(𝑛 + 1), the functional
equations implies that 𝑞(𝑛 − 𝑗) divides 𝑔(𝑛 − 1) or 𝑞(𝑛 + 1)
divides 𝑔(𝑛 + 𝑗).

Problem 9.2.3. For any nonnegative integer 𝑚, can the sums

𝑛−1∑𝑘=0 (−1)𝑘 (𝑚𝑘 ) and
𝑛−1∑𝑘=0 (𝑚𝑘 )

be expressed in closed form?

Solution. Following the Gosper algorithm, we have𝑡𝑛+1𝑡𝑛 = (−1)𝑛+1 ( 𝑚𝑛+1)(−1)𝑛 (𝑚𝑛 ) = (−1) 𝑚!(𝑛 + 1)!(𝑚− 𝑛− 1)! 𝑛!(𝑚− 𝑛)!𝑚! = 𝑛 −𝑚𝑛+ 1 ,
so 𝑓(𝑛) = 𝑛 − 𝑚, 𝑔(𝑛) = 𝑛 + 1, and ℎ(𝑛) = 1. Hence, we have
gcd(𝑛 − 𝑚,𝑛 + 1 + 𝑗) = 1 for all nonnegative integers 𝑗. The
functional equation (𝑛 − 𝑚)𝑝(𝑛 + 1) − (𝑛)𝑝(𝑛) = 1 has the
constant polynomial 𝑝(𝑛) = −1 ⁄𝑚 as a solution. We conclude that𝑠𝑛 ∶= − 𝑛𝑚(−1)𝑛 (𝑚𝑛 ) = (−1)𝑛+1 (𝑚−1𝑛−1 ) satisfies

𝑠𝑛+1 − 𝑠𝑛 = (−1)𝑛+2 (𝑚− 1𝑛 ) − (−1)𝑛+1 (𝑚− 1𝑛 − 1 )= (−1)𝑛⎧⎩(𝑚− 1𝑛 ) + (𝑚− 1𝑛 − 1 )⎫⎭ = (−1)𝑛 (𝑚𝑛 ) .
Thus, we have ∑𝑛−1𝑘=0 (−1)𝑘 (𝑚𝑘 ) = (−1)𝑛+1 (𝑚−1𝑛−1 ) for all nonnegative
integers 𝑛.

For the second sum, the Gosper algorithm gives𝑡𝑛+1𝑡𝑛 = ( 𝑚𝑛+1)(𝑚𝑛 ) = 𝑚!(𝑛 + 1)! (𝑚− 𝑛− 1)! 𝑛! (𝑚− 𝑛)!𝑚! = 𝑚− 𝑛𝑛+ 1
so 𝑓(𝑛) = 𝑚 − 𝑛, 𝑔(𝑛) = 𝑛 + 1, and ℎ(𝑛) = 1. Observe that
gcd(𝑚 − 𝑛,𝑛 + 1 + 𝑗) = 1 for all nonnegative integers 𝑗. However,
the functional equation (𝑚 − 𝑛)𝑝(𝑛 + 1) − (𝑛)𝑝(𝑛) = 1 has no
solution because the highest coefficients do not cancel. Therefore,
this indefinite sum is not hypergeometric.
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9.3 The Zeilberger Algorithm

Although the infinite sum ∑𝑘∈ℤ (𝑚𝑘 ) = 2𝑚 has a simple form,
the indefinite sum ∑𝑛−1𝑘=0 (𝑚𝑘 ) is not hypergeometric. Extending
our analogy, the function exp(−𝑥2) is not the derivative of an
elementary function, so the infinite integral ∫ exp(−𝑥2) 𝑑𝑥 cannot
be expressed as an elementary function. Nevertheless, the definite
improper integral is ∫∞−∞ exp(−𝑥2) 𝑑𝑥 = √𝜋.

Consider a sum ∑𝑘 𝐹(𝑛, 𝑘) where 𝐹(𝑛, 𝑘) is a hypergeometric
term in both arguments: 𝐹(𝑛+1, 𝑘)⁄𝐹(𝑛, 𝑘) and 𝐹(𝑛, 𝑘+1)⁄𝐹(𝑛, 𝑘)
are rational functions of 𝑛 and 𝑘. Can we find a recurrence for the
sum? Even though we cannot expect, in general, to find a term𝐺(𝑛, 𝑘) such that 𝐹(𝑛, 𝑘) = 𝐺(𝑛, 𝑘 + 1) − 𝐺(𝑛, 𝑘), we often get
lucky and find a 𝐺(𝑛, 𝑘) for which

𝐹(𝑛 + 1, 𝑘) − 𝐹(𝑛, 𝑘) = 𝐺(𝑛, 𝑘 + 1) − 𝐺(𝑛, 𝑘) .
When this happens, we can prove that the definite sum is a con‑
stant. By extending the Gosper algorithm, Zeilberger provides a
method for determining if such a recurrence of a given order ex‑
ists. Rather than discuss all of the details, we simply illustrate the
basic idea in a two examples.

Problem 9.3.1. For any nonnegative integer 𝑛, does the sum

𝑠𝑛 ∶= ∑𝑘∈ℤ(−1)𝑘 (𝑛𝑘) (𝑛 + 𝑘𝑘 )
satisfy a first‑order recurrence?

Solution. For any two polynomials 𝛼,𝛽 ∈ ℂ[𝑛], consider the first‑
order recurrence operator:

𝐻(𝑛, 𝑘) = 𝛼(𝑛)𝐹(𝑛, 𝑘) + 𝛽(𝑛)𝐹(𝑛 + 1, 𝑘)
= 𝛼(𝑛) (−1)𝑘 (𝑛𝑘) (𝑛 + 𝑘𝑘 ) + 𝛽(𝑛) (−1)𝑘 (𝑛 + 1𝑘 ) (𝑛 + 1 + 𝑘𝑘 )
= (𝑛 + 𝑘)!(−1)𝑘(𝑘!)2(𝑛 + 1 − 𝑘)!(𝑘(𝛼(𝑛) − 𝛽(𝑛)) + (𝑛 + 1)(𝛼(𝑛) + 𝛽(𝑛))) .

Set ℎ(𝑘) ∶= 𝑘(𝛼(𝑛) − 𝛽(𝑛)) + (𝑛 + 1)(𝛼(𝑛) + 𝛽(𝑛)) ∈ (ℚ[𝑛])[𝑘].
Following the Gosper algorithm, we have𝐻(𝑛, 𝑘 + 1)𝐻(𝑛, 𝑘) = (𝑛 + 𝑘+ 1)! (−1)𝑘+1((𝑘 + 1)!)2(𝑛 − 𝑘)! (𝑘!)2(𝑛 + 1 − 𝑘)!(𝑛 + 𝑘)! (−1)𝑘 ℎ(𝑘 + 1)ℎ(𝑘)

= (𝑘 + (𝑛 + 1))((𝑘 − (𝑛 + 1))(𝑘 + 1)2 ℎ(𝑘 + 1)ℎ(𝑘) ,
so 𝑓(𝑘) = (𝑘 + (𝑛 + 1))((𝑘 − (𝑛 + 1)), 𝑔(𝑘) = (𝑘 + 1)2, and
gcd(𝑓(𝑘), 𝑔(𝑘 + 𝑗)) = 1 for all nonnegative integers 𝑗. The func‑
tional equation becomes

(𝑘+(𝑛+1))((𝑘−(𝑛+1)) 𝑝(𝑘+1)−𝑘2 𝑝(𝑘) = 𝑘(𝛼(𝑛)−𝛽(𝑛))+(𝑛+1)(𝛼(𝑛)+𝛽(𝑛))
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which has the solution 𝛼(𝑛) = 𝛽(𝑛) = 𝑛 + 1 and 𝑝(𝑘) = −2. We
conclude that

𝐺(𝑛, 𝑘) = 𝑔(𝑘 − 1)𝑝(𝑘)ℎ(𝑘) 𝐻(𝑛, 𝑘) = (−1)𝑘+1 2 𝑘2 (𝑛 + 𝑘)!(𝑘!)2 (𝑛 + 1 − 𝑘)!
satisfies

𝐺(𝑛, 𝑘 + 1) − 𝐺(𝑛, 𝑘) = (−1)𝑘+2 2 (𝑘 + 1)2 (𝑛 + 𝑘 + 1)!((𝑘 + 1)!)2 (𝑛 − 𝑘)! − (−1)𝑘+1 2 𝑘2 (𝑛 + 𝑘)!(𝑘!)2 (𝑛 + 1 − 𝑘)!
= (−1)𝑘+1 2 (𝑛 + 𝑘)!(𝑘!)2(𝑛 − 𝑘)! ⎧

⎪⎩
(𝑘 + 1)2 (𝑛 + 𝑘 + 1)(𝑘 + 1)2 + 𝑘2𝑛 + 1 − 𝑘⎫⎪⎭= −2(𝑛 + 1)2𝐻(𝑛, 𝑘) .

Hence, we have∑𝑘∈ℤ𝐻(𝑛, 𝑘) = −2(𝑛 + 1)2 ∑𝑘∈ℤ𝐺(𝑛, 𝑘 + 1) − 𝐺(𝑛, 𝑘) = 0 ,
so (𝑛 + 1)𝑠𝑛 + (𝑛 + 1)𝑠𝑛+1 = 0, 𝑠𝑛+1 = −𝑠𝑛, and 𝑠𝑛 = (−1)𝑛.

Problem 9.3.2. For any nonnegative integer 𝑛, does the sum

𝑠𝑛 ∶= ∑𝑘∈ℤ (𝑛𝑘) (𝑛 + 𝑘𝑘 )
satisfy a second‑order recurrence?

Solution. For any polynomials 𝛼,𝛽, 𝛾 ∈ ℂ[𝑛], consider the second‑
order recurrence operator:𝐻(𝑛, 𝑘) = 𝛼(𝑛)𝐹(𝑛, 𝑘) + 𝛽(𝑛)𝐹(𝑛 + 1, 𝑘) + 𝛾(𝑛)𝐹(𝑛 + 2, 𝑘)

= 𝛼(𝑛) (𝑛𝑘) (𝑛 + 𝑘𝑘 ) + 𝛽(𝑛) (𝑛 + 1𝑘 ) (𝑛 + 1 + 𝑘𝑘 ) + 𝛾(𝑛) (𝑛 + 2𝑘 ) (𝑛 + 2 + 𝑘𝑘 )
= (𝑛 + 𝑘)!(𝑘!)2(𝑛 − 𝑘 + 2)!ℎ(𝑘) .

For brevity, setℎ(𝑘)∶= (𝑛−𝑘+2)(𝑛−𝑘+1)𝛼(𝑛)+(𝑛+𝑘+1)(𝑛−𝑘+2)𝛽(𝑛)+(𝑛+𝑘+2)(𝑛+𝑘+1) 𝛾(𝑛) .
Following the Gosper algorithm, we have𝐻(𝑛, 𝑘 + 1)𝐻(𝑛, 𝑘) = (𝑛 + 𝑘+ 1)!((𝑘 + 1)!)2(𝑛 − 𝑘 + 1)! (𝑘!)2 (𝑛 − 𝑘 + 2)!(𝑛 + 𝑘)! ℎ(𝑘 + 1)ℎ(𝑘)

= (𝑛 + 𝑘+ 1)(𝑛 − 𝑘 + 2)(𝑘 + 1)2 ℎ(𝑘 + 1)ℎ(𝑘)
so we obtain 𝑓(𝑘) = (𝑛 + 𝑘 + 1)(𝑛 − 𝑘 + 2), 𝑔(𝑘) = (𝑘 + 1)2,
and gcd(𝑓(𝑘), 𝑔(𝑘 + 𝑗)) = 1 for all nonnegative integers 𝑗. The
functional equation is (𝑛+𝑘+1)(𝑛−𝑘+2)𝑝(𝑘+1)−𝑘2𝑝(𝑘) = ℎ(𝑘).
It follows that𝑘0 ∶ (𝑛 + 1)(𝑛 + 1)𝑝 = (𝑛 + 1)(𝑛 + 2)(𝛼(𝑛) + 𝛽(𝑛) + 𝛾(𝑛))𝑘1 ∶ 𝑝 = (−2𝑛 − 3)𝛼(𝑛) + 𝛽(𝑛) + (2𝑛 + 3)𝛾(𝑛)𝑘2 ∶ −2𝑝 = 𝛼(𝑛) − 𝛽(𝑛) + 𝛾(𝑛)
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which has 𝛼(𝑛) = 𝑛 + 1, 𝛽(𝑛) = −6𝑛 − 9, 𝛾(𝑛) = 𝑛 + 2, and𝑝(𝑛) = −4𝑛 − 6 as a solution. We conclude that

(𝑛 + 1)𝑠𝑛 − (6𝑛 + 9)𝑠𝑛+1 + (𝑛 + 2)𝑠𝑛+2 = 0 .
Remark 9.3.3. The numbers satisfying this last recurrence are
called the central Delannoy numbers. Their ordinary generating
function is (1 − 6𝑥 + 𝑥2)−1/2.


