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9.2 The Gosper Algorithm

Recall the following algorithm.

Algorithm 9.2.1 (Gosper).
input: a hypergeometric term ¢,
output: a hypergeometric term s,, such that s, , — s, = t,

if one exists, otherwise null.
Write t’;—:l = %% where f, g, h € C[x] and ged(f(n), g(n + j)) = 1 for all nonnegative integers j.
If there exists a nonzero polynomial p(n) such that f(n) p(n + 1) — g(n — 1) p(n) = h(n)

then return g“‘%%“’” t,

else return null.

n-1
Problem 9.2.2. Can ), k! be expressed in closed form?
k=0

Solution. Following the Gosper algorithm, we have

thy1r _ (n+1)!

i, r n+1

so f(n) = n+1, g(n) =1, and h(n) = 1. The functional equation is
(n + 1)p(n + 1) — p(n) = 1 which has no solution. Therefore, this
indefinite sum is not hypergeometric. O

Correctness of the Gosper algorithm. Given Lemmas 9.1.5-9.1.7, it
remains to show that a rational function p(n) that satisfies

f(m)p(n+1) — g(n—1)p(n) = h(n)

is a polynomial.

Let p(n) = a(n)/b(n) where ged(a(n), b(n)) = 1. To prove that
b(n) = 1, we show that ged(b(n), b(n + k)) = 1 for all nonnegative
integers k. The case k = 0 establishes that b(n) = 1.

Suppose otherwise and let j be maximal nonnegative integer
such that q(n) := ged(b(n), b(n + j)) # 1. If b(n) # 1, then such an
index j exists. Indeed, if £ is aroot of g(n),then £ and ¢ := & + j
are roots of b(n). When j > max{¢ — & | & and ¢ roots of b(n)}, the
defining equation of gq(n) cannot be satisfied. Hence, the defini-
tion of j implies that ged (b(n), b(n + j + 1)) = 1.

Since p(n) = a(n)/b(n), the functional equation becomes

fm)a(n+1)b(n) —g(n —1)a(n)b(n + 1) = h(n) b(n) b(n + 1).

We derive the desired contradiction by showing that

(@) q(n + 1) divides f(n), and

(b) g(n + 1) divides g(n + j).

As a consequence, the maximality of the degree h(n) implies that
ged(f(n),g(n + j)) = 1, for all nonnegative integers j, and we
deduce thatq(n + 1) = 1.
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Proofof a. Set p(n) := ged(q(n + 1), b(n)). It follows that ¢(n)
divides q(n + 1) which divides b(n + j + 1). We also see that
@(n) divides b(n). Because ged (b(n),b(n + j + 1)) = 1, we
deduce that ¢(n) = 1. Since q(n + 1) divides b(n + 1), and
q(n + 1) is relatively prime to a(n + 1) and b(n), the functional
equation implies that g(n + 1) divides f(n).

Proof of b. Setp(n) = ged(q(n — j),b(n + 1)). It follows that
P(n + j) divides g(n) which divides b(n). We also see that
Y(n + j) divides b(n + j + 1). Again because

ged(b(n),b(n+ j+1))=1,

we deduce that (n) = 1. Since q(n—j) divides b(n) and g(n— j)
is relatively prime to both a(n) and b(n + 1), the functional
equations implies that g(n — j) divides g(n — 1) or g(n + 1)
divides g(n + j). O
Problem 9.2.3. For any nonnegative integer m, can the sums
n—1 m n—1 m
(=1)k ( ) and < )
2 2k

be expressed in closed form?

Solution. Following the Gosper algorithm, we have

taer _ (") — (-1 m! nm-n)! _n-m
te (=D (") T Ym+D(m-n-1) ml T n+1°

so f(n) = n—m,g(n) = n+ 1,and h(n) = 1. Hence, we have
gcd(n — myn + 1 + j) = 1 for all nonnegative integers j. The
functional equation (n — m)p(n + 1) — (n) p(n) = 1 has the

constant polynomial p(n) = —1/m as a solution. We conclude that
Spi= — (=) (M) = (=) (7)) satisfies
m-—1 m-—1
Swr =8 = (<12 (M) = o (T2

=cor (") (2 = o (),

Thus, we have ZZ;; (=D (%) = (=1)"*+1 (-] for all nonnegative
integers n.
For the second sum, the Gosper algorithm gives

tn+1:!n21!: m! n(m—n) _m-n
t, (7)) " (m+D)(m-—n-1D m nF 1

so f(n) = m—n,g(n) = n+ 1,and h(n) = 1. Observe that
ged(m — n,n + 1+ j) = 1 for all nonnegative integers j. However,
the functional equation (m — n)p(n + 1) — (n) p(n) = 1 hasno
solution because the highest coefficients do not cancel. Therefore,
this indefinite sum is not hypergeometric. O
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9.3 The Zeilberger Algorithm

Although the infinite sum },, _, (¥) = 2™ has a simple form,
the indefinite sum ZZ;; ('%) is not hypergeometric. Extending
our analogy, the function exp(—x?) is not the derivative of an
elementary function, so the infinite integral /' exp(—x?) dx cannot
be expressed as an elementary function. Nevertheless, the definite
improper integral is /° exp(—x?) dx = L2

Consider a sum ;, F(n, k) where F(n, k) is a hypergeometric
term in both arguments: F(n+1, k)/F(n, k) and F(n,k+1)/F(n, k)
are rational functions of n and k. Can we find a recurrence for the
sum? Even though we cannot expect, in general, to find a term
G(n, k) such that F(n,k) = G(n,k + 1) — G(n, k), we often get
lucky and find a G(n, k) for which

F(n+1,k)—F(n,k) = G(n,k+1) - G(n,k).

When this happens, we can prove that the definite sum is a con-
stant. By extending the Gosper algorithm, Zeilberger provides a
method for determining if such a recurrence of a given order ex-
ists. Rather than discuss all of the details, we simply illustrate the
basic idea in a two examples.

Problem 9.3.1. For any nonnegative integer n, does the sum
. cfny(n+k
sni= 0 () (")
(VA4

satisfy a first-order recurrence?

Solution. For any two polynomials «, 3 € C[n], consider the first-
order recurrence operator:

H(n,k) = a(n)F(n,k) + B(n) F(n + 1,k)

e (7)) a1
_ (n+k)I(=1k
~ (k)A(n+1-k)!

Set h(k) := k(a(n) — B(n)) + (n + 1)(a(n) + B(n)) € (Q[n])[k].
Following the Gosper algorithm, we have
Hn,k+1)  (m+k+ DD (k)*(n+1-k) h(k +1)
H(n, k) ((k + 1)!)2(1’1 — k)! (n+k)!(-1)k hk)
3 (k+(n+1D)((k—(M+1)hk+1)
B (k +1)2 h(k) ~°

so f(k) = (k+ (n+1))((k —(n+1)),gk) = (k+1)* and
ged(f(k),g(k + j)) = 1for all nonnegative integers j. The func-
tional equation becomes

(k+(n+1))((k—(n+1)) p(k+1)—k? p(k) = k(a(n)—B(n))+(n+1)(a(n)+p(n))

(K(a(n) = B(m)) + (n + 1)(ax(n) + B(n))).

11
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which has the solution a(n) = f(n) = n + 1 and p(k) = —2. We

conclude that

(=D**+12k2(n + k)!
(k2(n+1-k)

G(n, k) = WHM, k) =

satisfies
D22k +1)*(n+ k+ 1) (=DF12k*(n + k)!

Gn,k+1)-G(n,k) =

((k+ 1)) (n = k) (k)2 (n+1-k)!
(=2 (m+ k) [ (k+1)2(n+k+1) k?
— (kY2(n - k) (k +1)2 n+l-k

= —-2(n+1)*H(n,k).
Hence, we have

D H(n,k)=-2(n+1)*)  G(n,k+1) - G(n,k) =0,

kez kez

so(n+1)s,+(n+1)s,,, =0,5,4; = =Sy, and s, = (=1)". O
Problem 9.3.2. For any nonnegative integer n, does the sum

=2 (0" )

kez

satisfy a second-order recurrence?

Solution. For any polynomials «, 3,y € C[n], consider the second-
order recurrence operator:

H(n,k) = a(n)F(n,k) + B(n)F(n + 1,k) + y(n) F(n + 2,k)

—am(F)("E4) e pon (") (e (M) (2

_ (n+ k)
— (kY2(n -k +2)!

For brevity, set

h(k) .= (n—k+2)(n—-k+1) a(n)+(n+k+1)(n—k+2) f(n)+(n+k+2)(n+k+1) y(n).

h(k).

Following the Gosper algorithm, we have

H(n,k+1) _ (n+k+1) (k> (n—k+2) h(k+1)
Hn k) (k+ D)) (n—k+1)  (n+K)! h(k)
_(n+k+1)(n—k+2)h(k+1)
a (k +1)2 h(k)

so we obtain f(k) = (n + k + 1)(n — k + 2), g(k) = (k + 1)?,
and ged(f(k), g(k + j)) = 1 for all nonnegative integers j. The
functional equation is (n+k+1)(n—k+2) p(k+1) —k?*p(k) = h(k).
It follows that

K: (m+1)(n+1p=(m+1(n+2)(aln)+pn) +yn)

k! p = (=2n-3)a(n) + B(n) + (2n + 3)y(n)

k? —2p = a(n) — B(n) + y(n)
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whichhasa(n) = n+ 1,8(n) = —6n —9,y(n) = n + 2,and
p(n) = —4n — 6 as a solution. We conclude that

(n+1)s,—(6n+9)s,.; +(n+2)s,.,=0. O

Remark 9.3.3. The numbers satisfying this last recurrence are
called the central Delannoy numbers. Their ordinary generating
function is (1 — 6x + x2)~1/2,
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