Problems 1

Due: Friday, 17 September 2021 before 17:00 EDT
Students registered in MATH 402 should submit solutions to 4 of the following problems. Students in MATH 802 should submit solutions to all 5 .

1. Use The On-Line Encyclopedia of Integer Sequences, founded by N.J.A. Sloane and available at https://oeis.org/, to identify the following sequences:
(i) $1,1,3,7,19,47,130,343,951,2615,7318,20491, \ldots$
(ii) $10,219,4796,105030,2300104,50371117, \ldots$
(iii) $1,1,1,3,16,125,1296,16807,262144,4782969, \ldots$
2. Use MathSciNet and the arXiv (available at
http://www.ams.org.proxy.queensu.ca/mathscinet/, and https://arxiv.org
respectively) to answer the following questions:
(i) Count the "Journal" publications with the phrase "Catalan numbers" or "Catalan number" in their title.
(ii) How many combinatorics preprints were added to the e-print archives in July 2021?
3. Let m be the arithmetic mean of a finite set of real numbers. Use the pigeonhole principle to show that there exists at least one number in the set that is less than or equal to m.
4. Consider a collection of 6 people. Prove that there are either three mutual acquaintances (all have met before) or three mutual strangers (none have ever met before).
5. For all nonnegative integer n, let F_{n} denote the n-th Fibonacci number.
(i) For all positive integers n, show that

$$
\left[\begin{array}{cc}
F_{n+1} & F_{n} \\
F_{n} & F_{n-1}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]^{n} .
$$

(ii) For all positive integers n, prove that $F_{n}^{2}-F_{n+1} F_{n-1}=(-1)^{n-1}$.
(iii) By diagonalizing the matrix in part (i), rederive the Binet formula.

