Problems 2

Due: Friday, 24 September 2021 before 17:00 EDT

Students registered in MATH 402 should submit solutions to 4 of the following problems. Students in MATH 802 should submit solutions to all 5.

- **1.** The *Jacobsthal numbers* are defined by $J_0 := 0$, $J_1 := 1$, and $J_n := J_{n-1} + 2J_{n-2}$ for all integers *n* greater than 1. This sequence begins 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, For all nonnegative integers n, show that J_{n+1} is the number of tilings of an $(2 \times n)$ -rectangle with dominos and (2×2) -square tiles.
- **2.** For any nonnegative integer *n*, let F_n denote the *n*-th Fibonacci number.
 - (i) For any nonnegative integer *n*, use a double-counting argument to verify that

$$F_2 + F_4 + F_6 + \dots + F_{2n+2} = F_{2n+3} - 1.$$

(ii) For all nonnegative integers *m* and *n*, provide a bijective argument establishing that

$$F_{m+n+2} = F_{m+2} F_{n+2} - F_m F_n \,.$$

3. For any nonnegative integer *n*, the *double factorial* is defined by

$$n!! := \prod_{k=0}^{\lceil n/2 \rceil - 1} (n - 2k).$$

This sequence begins 1, 1, 2, 3, 8, 15, 48, 105, 384, 945, 3840, 10395,

- (i) For any nonnegative integer n, show that (2n)!! is the number of permutations of the set [2*n*] such that 2i - 1 is adjacent to 2i for all $1 \le i \le n$.
- (ii) For any nonnegative integer n, use a double-counting argument to prove

$$\sum_{j=0}^{n} (2j+1)(2j)!! = (2n+2)!! - 1.$$

- **4.** For any positive real number *z*, consider the integral $\Gamma(z) := \int_{0}^{\infty} x^{z-1}e^{-x} dx$.
 - (i) Prove that $\Gamma(z + 1) = z \Gamma(z)$.
 - (ii) For all nonnegative integers *n*, demonstrate that $\Gamma(n + 1) = n!$.

5. For any nonnegative integer *n*, consider the integral $C_n := \frac{1}{2\pi} \int_0^4 x^n \sqrt{\frac{4-x}{x}} dx$. (i) For all $n \in \mathbb{N}$, show that $C_n := \frac{2^{2(n+1)}}{\pi} \int_0^1 y^{2n} \sqrt{1-y^2} dy$. (ii) Compute C_0 .

- (ii) Compute C_0 .
- (iii) Demonstrate that $2(2n + 1)C_n = (n + 2)C_{n+1}$.

