Problems 3

Due: Friday, 1 October 2021 before 17:00 EDT
Students registered in MATH 402 should submit solutions to 4 of the following problems. Students in MATH 802 should submit solutions to all 5.

1. For any nonnegative integer n, let F_{n} denote the n-th Fibonacci number. Prove each of the following identities via a double-counting argument.
(i) For any nonnegative integer n, verify that $F_{2 n+2}=\sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}}\binom{n-j}{k}\binom{n-k}{j}$.
(ii) For all nonnegative integers n and m satisfying $n \geqslant m$, verify that

$$
F_{n+m+1}=\sum_{k \in \mathbb{Z}}\binom{m}{k} F_{n-k+1}
$$

2. Give two proofs for each of the following identities: one using a double-counting argument and the other by relying on the key binomial identities.
(i) For any nonnegative integers n, establish that $\sum_{k \in \mathbb{Z}}\binom{n}{k}^{2}=\binom{2 n}{n}$.
(ii) For any nonnegative integer n, establish that

$$
\sum_{k \in \mathbb{Z}} k(k-1)(k-2)\binom{n+3}{k}=(n+3)(n+2)(n+1) 2^{n} .
$$

3. Use the key binomial identities to solve the following problems.
(i) For any integer k, prove that

$$
\binom{x}{k}\binom{x-\frac{1}{2}}{k}=4^{-k}\binom{2 x}{2 k}\binom{2 k}{k} .
$$

(ii) For any nonnegative integers m and n, express

$$
\sum_{k \in \mathbb{Z}} \sum_{j \in \mathbb{Z}}\binom{m-x+y}{k}\binom{n+x-y}{n-k}\binom{x}{m+n-j}\binom{k}{j}
$$

in terms of x, y, m, and n.
4. For all positive integers n and k, a composition of n into k parts is a k-tuple ($a_{1}, a_{2}, \ldots, a_{k}$) of positive integers such that $a_{1}+a_{2}+\cdots+a_{k}=n$.
(i) Provide a bijective proof that the number of compositions of n into k parts is $\binom{n-1}{k-1}$.
(ii) Show that the total number of compositions of n is 2^{n-1}.
(iii) Show that $\left(\binom{k}{n-k}\right)=\binom{n-1}{k-1}$ via a double-counting argument.
5. Prove the following identities via a double-counting argument.
(i) For all nonnegative integer m and n, show that

$$
\left(\binom{n}{2 m+1}\right)=\sum_{k \in \mathbb{Z}}\left(\binom{k}{m}\right)\left(\binom{n-k+1}{m}\right) .
$$

(ii) For all nonnegative integer m, n, and k, show that

$$
\left(\binom{m+n}{k}\right)=\sum_{j \in \mathbb{Z}}\left(\binom{m}{j}\right)\left(\binom{n}{k-j}\right)
$$

