Problems 4

Due: Friday, 22 October 2021 before 17:00 EDT
Students registered in MATH 402 should submit solutions to 4 of the following problems. Students in MATH 802 should submit solutions to all 5.

1. For any nonnegative integer n, the Bell number ϖ_{n} counts all the partitions of the set [n]. Prove each of the following identities via a double-counting argument.
(i) For any nonnegative integer n, demonstrate that $\varpi_{n}=\sum_{k \in \mathbb{Z}}\left\{\begin{array}{l}n \\ k\end{array}\right\}$.
(ii) For any nonnegative integer n, demonstrate that $\varpi_{n+1}=\sum_{j \in \mathbb{Z}}\binom{n}{j} \varpi_{j}$.
2. For any nonnegative integer n, prove the following variants of the binomial theorem.
(i) $(x+y)^{\bar{n}}=\sum_{k \in \mathbb{Z}}\binom{n}{k} x^{\bar{k}} y^{\overline{n-k}}$
(ii) $(x+y)^{\underline{n}}=\sum_{k \in \mathbb{Z}}\binom{n}{k} x^{\underline{k}} y^{\underline{n-k}}$
3. Prove each of the following identities via a double-counting argument.
(i) For all nonnegative integer m and n, establish that $\left\{\begin{array}{l}n+1 \\ m+1\end{array}\right\}=\sum_{k=0}^{n}\left\{\begin{array}{l}k \\ m\end{array}\right\}(m+1)^{n-k}$.
(ii) For all nonnegative integer m and n, establish that $\left[\begin{array}{c}n+1 \\ m+1\end{array}\right]=\sum_{k=0}^{n}\left[\begin{array}{l}k \\ m\end{array}\right] n \underline{n-k}$.
4. Prove the following identities via a double-counting argument.
(i) For all nonnegative integer m and n, show that $\left\{\begin{array}{c}m+n+1 \\ m\end{array}\right\}=\sum_{k=0}^{m} k\left\{\begin{array}{c}n+k \\ k\end{array}\right\}$.
(ii) For all nonnegative integer m and n, show that $\left[\begin{array}{c}m+n+1 \\ m\end{array}\right]=\sum_{k=0}^{m}(n+k)\left[\begin{array}{c}n+k \\ k\end{array}\right]$.
5. For any nonnegative integer n, a Stirling permutation is a permutation of the multiset $M_{n}:=\left\{1^{2}, 2^{2}, \ldots, n^{2}\right\}$ such that, for each element j in the permutation, all elements between the two copies of j are larger than j. The 15 Stirling permutations of M_{3} are

For any nonnegative integer n and any integer k, the Eulerian number of the second kind, denoted $\left\langle\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle\right.$, counts the number of Stirling permutations of the multiset M_{n} that have k ascents. For instance, we have $\left\langle\left\langle\begin{array}{l}3 \\ 0\end{array}\right\rangle\right\rangle=1,\left\langle\left\langle\begin{array}{l}3 \\ 1\end{array}\right\rangle\right\rangle=8$, and $\left\langle\left\langle\begin{array}{l}3 \\ 2\end{array}\right\rangle\right\rangle=6$.
(i) For any nonnegative integer n, provide an inductive proof that the number of Stirling permutations of M_{n+1} is $(2 n+1)!$!.
(ii) For any nonnegative integer n and any integer k, prove via double-counting the additive identity for Eulerian number of the second kind:

$$
\left\langle\left\langle\begin{array}{l}
n+1 \\
k+1
\end{array}\right\rangle\right\rangle=(2 n-k)\left\langle\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle\right\rangle+(k+2)\left\langle\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\right\rangle .
$$

(iii) For all $0 \leqslant n, k \leqslant 7$, compute the matrix whose (n, k)-entry is $\left\langle\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle\right.$.

