Problems 5

Due: Friday, 29 October 2021 before 17:00 EDT
Students registered in MATH 402 should submit solutions to 4 of the following problems. Students in MATH 802 should submit solutions to all 5.

1. Let $p(n)$ denote the number of partitions of the nonnegative integer n. Express the number of partitions of n with no part equal to 1 as a linear combination of values $p(k)$ for some nonnegative integer k.
2. A complete binary tree is a binary tree in which every vertex has either zero or two children. For any nonnegative integer n, provide a bijective proof that the Catalan number C_{n} equals the number of complete binary trees with $2 n+1$ vertices.

Figure 1. The 14 complete binary trees with 9 vertices
3. For any nonnegative integer n, provide a bijective proof that the Catalan number C_{n} counts the expressions containing n pairs of parentheses that are correctly matched.
((())))
((()()))
((())())
$((()))()$
$(()(())) \quad(()()())$
$(()())()$
$(())(())$
$(())()()$
()(()))
()(()())
()(())()
()()(())
()()()

Figure 2. The 14 expressions containing 4 pairs of matched parentheses
4. For any nonnegative n, use a sign-reversing involution to prove that

$$
\sum_{k \in \mathbb{Z}}(-1)^{k}\left[\begin{array}{c}
n+2 \\
k
\end{array}\right]=0
$$

5. For all nonnegative integers m and n, use a sign-reversing involution to prove that

$$
\sum_{k \in \mathbb{Z}}(-1)^{k}\binom{m+n}{m-k}\left(\binom{n}{k}\right)=1
$$

