Problems 6

Due: Friday, 5 November 2021 before 17:00 EDT

Students registered in MATH 402 should submit solutions to 4 of the following problems. Students in MATH 802 should submit solutions to all 5.

1. A bridge hand is a subset of cardinality 13 selected from a standard deck of 52 cards. A face card is a jack, queen, king, or ace. How many bridge hands have at least one of each kind of face card?
2. For any nonnegative integer, let D_{n} denote the number of derangements of the set [n].
(i) For any nonnegative integer n, verify via double counting that

$$
D_{n+2}=(n+1)\left(D_{n+1}+D_{n}\right) .
$$

(ii) For any nonnegative integer n, show that $D_{n+1}=(n+1) D_{n}+(-1)^{n+1}$ using part (i) and induction.
3. Let R denote a commutative domain of characteristic zero. Consider two formal power series $f(x):=\sum_{j \in \mathbb{N}} a_{j} x^{j} \in R[[x]]$ and $g(x):=\sum_{j \in \mathbb{N}} b_{j} x^{j} \in R[[x]]$. When $f(x) \in R[x]$ or $\left[x^{0}\right](g(x))=b_{0}=0$, show that the composition

$$
f(g(x)):=\sum_{j \in \mathbb{N}} a_{j}(g(x))^{j}
$$

is a well-defined element of $R[[x]]$.
4. Fix a nonnegative integer n.
(i) Use the power conversion identity for Stirling subset numbers to show that

$$
(x+1)^{n}=\sum_{m \in \mathbb{Z}}\left\{\begin{array}{l}
n+1 \\
m+1
\end{array}\right\} x^{\underline{m}} .
$$

(ii) By comparing appropriate coefficients in a polynomial equation, prove that

$$
\left\{\begin{array}{l}
n+1 \\
m+1
\end{array}\right\}=\sum_{k \in \mathbb{Z}}\binom{n}{k}\left\{\begin{array}{l}
k \\
m
\end{array}\right\} .
$$

(iii) By comparing appropriate coefficients in a polynomial equation, prove that

$$
\left[\begin{array}{c}
n+1 \\
m+1
\end{array}\right]=\sum_{k \in \mathbb{Z}}\left[\begin{array}{l}
n \\
k
\end{array}\right]\binom{k}{m} .
$$

5. Let K be a field of characteristic zero. Consider the K-algebra $K((x))$ of formal Laurent series. The formal residue map Res : $K((x)) \rightarrow K$ is defined by $\operatorname{Res}(f):=\left[x^{-1}\right](f)$. For any two $f, g \in K((x))$, prove the following:
(i) $\operatorname{Res}\left(\frac{d f}{d x}\right)=0$;
(ii) $\operatorname{Res}\left(\frac{d f}{d x} g\right)=-\operatorname{Res}\left(f \frac{d g}{d x}\right)$;
(iii) $\operatorname{Res}\left(\frac{1}{f} \frac{d f}{d x}\right)=\operatorname{ord}(f)$ for all $f \neq 0$.

Hint: Differentiation is defined term-by-term.
Hint: Assume the product rule holds.

