Problems 7

Due: Friday, 26 November 2021 before 17:00 EDT
Students registered in MATH 402 should submit solutions to 4 of the following problems. Students in MATH 802 should submit solutions to all 5.

1. The exponential power series is $\exp (x):=\sum_{n \in \mathbb{N}} \frac{x^{n}}{n!} \in \mathbb{Q}[[x]]$.
(i) Let $f \in \mathbb{Q}[[x]]$. When $\frac{d f}{d x}=f$, show that there exists $c \in \mathbb{Q}$ such that $f=c \exp (x)$.
(ii) By extracting coefficients in $\mathbb{Q}[[t, x, y]]$, demonstrate that the binomial theorem is equivalent to the identity $\exp (t(x+y))=\exp (t x) \exp (t y)$.
(iii) For all nonnegative integers k and n, prove the multinomial theorem

$$
\left(x_{1}+x_{2}+\cdots+x_{k}\right)^{n}=\sum_{j_{1}+j_{2}+\cdots+j_{k}=n} \frac{n!}{j_{1}!j_{2}!\cdots j_{k}!} x_{1}^{j_{1}} x_{2}^{j_{2}} \cdots x_{k}^{j_{k}}
$$

by using a similar approach.
2. Find the unique sequence $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ of real numbers such that, for all nonnegative integers j, we have $\sum_{k=0}^{j} a_{k} a_{j-k}=1$.
3. For all nonnegative integers n, the Bernoulli numbers B_{n} are defined the recurrence

$$
(n+1) B_{n}=-\sum_{k=0}^{n-1}\binom{n+1}{k} B_{k}
$$

and the initial condition $B_{0}=1$.
(i) Prove that

$$
\frac{x}{\exp (x)-1}=\sum_{j \in \mathbb{N}} B_{j} \frac{x^{j}}{j!}
$$

(ii) Use the part (i) to demonstrate that $B_{2 j+1}=0$ for all positive integers j.
4. For any nonnegative integers m and n, use generating series to prove that

$$
\sum_{k \in \mathbb{N}}\binom{m}{k}\binom{n+k}{m}=\sum_{k \in \mathbb{N}}\binom{m}{k}\binom{n}{k} 2^{k}
$$

5. For all nonnegative integers n, the Laguerre polynomials are defined by the recurrence

$$
(n+2) L_{n+2}(x)=(2(n+1)+(1-x)) L_{n+1}(x)-(n+1) L_{n}(x)
$$

and the initial conditions $L_{0}(x)=1$ and $L_{1}(x)=1-x$.
(i) Show that the generating series for the Laguerre polynomials is

$$
\Phi(t):=\sum_{n \in \mathbb{N}} L_{n}(x) t^{n}=\frac{1}{1-t} \exp \left(-\frac{x t}{1-t}\right)
$$

(ii) Find a closed formula for $L_{n}(x)$.

