A Taste of Enumerative Geometry

Gregory G. Smith

Queen's
5 April 2023

Enumerative Geometry

Basic Question: How many projective subvarieties satisfy specific geometric conditions?
Examples:

- The number of lines on a smooth cubic surface in $\mathbb{P}^{3}: 27$.
- The number of quadrics in \mathbb{P}^{2} tangent to five general quadrics: 3264 .

- The number of rational cubic curves on a general quintic hypersurface in $\mathbb{P}^{4}: 371206375$.
Goal: Describe two basic enumerative examples.

Plane Quadrics

Parameter Space: Every curve $\mathrm{V}(q) \subset \mathbb{P}^{2}$ having degree 2 is given by $q:=a x^{2}+b y^{2}+c z^{2}+d x y+e x z+f y z$ and corresponds to the point $[a: b: c: d: e: f] \in \mathbb{P}^{5}$.
NOTE: Setting $\mathrm{Q}:=\left[\begin{array}{ccc}2 a & d & e \\ d & 2 b & f \\ e & f & 2 c\end{array}\right]$ gives $\left[\begin{array}{lll}x & y & z\end{array}\right] \mathrm{Q}\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{ll}2 & q\end{array}\right]$.
DISTINGUISHED SUBVARIETIES IN THE PARAMETER SPACE \mathbb{P}^{5} :

- The surface defined by rank $\mathrm{Q} \leqslant 1$ parametrizes the set of double lines $q=(\alpha x+\beta y+\gamma z)^{2}$.
- The hypersurface rank $\mathrm{Q} \leqslant 2$ parametrizes the singular quadrics $q=(\alpha x+\beta y+\gamma z)\left(\alpha^{\prime} x+\beta^{\prime} y+\gamma^{\prime} z\right)$.

Points on a Plane Quadric

Theorem: Five points, no four collinear, determine a unique quadric curve in \mathbb{P}^{2}.
IdeA: For all $1 \leqslant i \leqslant 5$, $\left[p_{i}: q_{i}: r_{i}\right] \in \mathbb{P}^{2}$ corresponds to $H_{i}:=\mathrm{V}\left(a p_{i}^{2}+b q_{i}^{2}+c r_{i}^{2}+d p_{i} q_{i}+e p_{i} r_{i}+f q_{i} r_{i}\right) \subset \mathbb{P}^{5}$. If the hyperplanes H_{i} are linearly independent then $H_{1} \cap H_{2} \cap \cdots \cap H_{5} \subset \mathbb{P}^{5}$ contains exactly one point.
Focus on [1:0:0], [0:1:0], [0:0:1], [s:t:1], [u:v:1]. Show that these 5 points impose independent conditions on hyperplanes when no 4 are collinear.

Quadric Surfaces

Lemma: Every smooth quadric in \mathbb{P}^{3} is projectively equivalent to the Segre surface $\sigma\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right) \subset \mathbb{P}^{3}$.
Idea: Diagonalizing the symmetric matrix Q and rescaling the variables shows that two quadrics are projectively equivalent if and only if they have the same rank. $\sigma\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)=\mathrm{V}(w z-x y)$ corresponds to $\frac{1}{2}\left[\begin{array}{cccc}0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]$.
Consequence: There are two families of lines on a smooth quadric in \mathbb{P}^{3} and each member of one family meets every member of the other family.

Schubert Calculus

Theorem: For any 4 pairwise-skew lines in \mathbb{P}^{3}, there exists 2 lines meeting (intersecting) them.

IDEA: Choosing 3 skew lines uniquely determines a quadric surface in \mathbb{P}^{3}. All 3 belong to the same family of lines on the surface. The 4th skew line meets the quadric surface in 2 points. Each of these points lies on a line in the other family. These 2 lines meet the 4 given lines.

