A Taste of Enumerative Geometry

Gregory G. Smith

Enumerative Geometry

BASIC QUESTION: How many projective subvarieties satisfy specific geometric conditions?

EXAMPLES:

- The number of lines on a smooth cubic surface in P³: 27.
- The number of quadrics in P² tangent to five general quadrics: 3 264.

• The number of rational cubic curves on a general quintic hypersurface in P⁴: 371 206 375.

GOAL: Describe two basic enumerative examples.

Plane Quadrics

PARAMETER SPACE: Every curve $V(q) \subset \mathbb{P}^2$ having degree 2 is given by $q := a x^2 + b y^2 + c z^2 + d xy + e xz + f yz$ and corresponds to the point $[a:b:c:d:e:f] \in \mathbb{P}^5$.

NOTE: Setting Q :=
$$\begin{bmatrix} 2a & d & e \\ d & 2b & f \\ e & f & 2c \end{bmatrix}$$
 gives $\begin{bmatrix} x & y & z \end{bmatrix} Q \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 & q \end{bmatrix}$.

DISTINGUISHED SUBVARIETIES IN THE PARAMETER SPACE \mathbb{P}^5 :

- The surface defined by rank $Q \le 1$ parametrizes the set of double lines $q = (\alpha x + \beta y + \gamma z)^2$.
- The hypersurface rank $Q \leq 2$ parametrizes the singular quadrics $q = (\alpha x + \beta y + \gamma z)(\alpha' x + \beta' y + \gamma' z)$.

Points on a Plane Quadric

THEOREM: Five points, no four collinear, determine a unique quadric curve in \mathbb{P}^2 .

IDEA: For all $1 \le i \le 5$, $[p_i:q_i:r_i] \in \mathbb{P}^2$ corresponds to $H_i := V(a p_i^2 + b q_i^2 + c r_i^2 + d p_i q_i + e p_i r_i + f q_i r_i) \subset \mathbb{P}^5$. **If the hyperplanes** H_i are linearly independent then $H_1 \cap H_2 \cap \cdots \cap H_5 \subset \mathbb{P}^5$ contains exactly one point. **Focus on** [1:0:0], [0:1:0], [0:0:1], [s:t:1], [u:v:1].

Show that these 5 points impose independent conditions on hyperplanes when no 4 are collinear.

Quadric Surfaces

LEMMA: Every smooth quadric in \mathbb{P}^3 is projectively equivalent to the Segre surface $\sigma(\mathbb{P}^1 \times \mathbb{P}^1) \subset \mathbb{P}^3$.

IDEA: Diagonalizing the symmetric matrix Q and rescaling the variables shows that two quadrics are projectively equivalent if and only if they have the same rank.

 $\sigma(\mathbb{P}^1 \times \mathbb{P}^1) = V(wz - xy) \text{ corresponds to } \frac{1}{2} \begin{bmatrix} 0 & 0 & 0 & 1\\ 0 & 0 & -1 & 0\\ 0 & -1 & 0 & 0\\ 1 & 0 & 0 & 0 \end{bmatrix}.$

CONSEQUENCE: There are two families of lines on a smooth quadric in \mathbb{P}^3 and each member of one family meets every member of the other family.

Schubert Calculus

THEOREM: For any 4 pairwise-skew lines in \mathbb{P}^3 , there exists 2 lines meeting (intersecting) them.

IDEA: Choosing 3 skew lines uniquely determines a quadric surface in \mathbb{P}^3 . All 3 belong to the same family of lines on the surface. The 4th skew line meets the quadric surface in 2 points. Each of these points lies on a line in the other family. These 2 lines meet the 4 given lines.

